Authors: Verónica Martínez-Cerdeño, Fernando García-Moreno, Maria Antonietta Tosches , András Csillag, Paul R. Manger, Zoltán Molnár

(Journal Name, Volume, page#)

Abstract: Comparative developmental studies provide growing understanding of vertebrate forebrain evolution. This short review directs the spotlight to some newly emerging aspects, including the evolutionary origin of the proliferative region known as the subventricular zone (SVZ) and of intermediate progenitor cells (IPCs) that populate the SVZ, neural circuits that originated within homologous regions across all amniotes, and the role of thermogenesis in the acquisition of an increased brain size. These data were presented at the 8th European Conference on Comparative Neurobiology.

PDF

Authors: Verónica Martínez-Cerdeño and Stephen C. Noctor

(Journal Name, Volume, page#)

Abstract: Since descriptions of neural precursor cells (NPCs) were published in the late 19th century, neuroanatomists have used a variety of terms to describe these cells, each term reflecting contemporary understanding of cellular characteristics and function. As the field gained knowledge through a combination of technical advance and individual insight, the terminology describing NPCs changed to incorporate new information. While there is a trend toward consensus and streamlining of terminology over time, to this day scientists use different terms for NPCs that reflect their field and perspective, i.e., terms arising from molecular, cellular, or anatomical sciences. Here we review past and current terminology used to refer to NPCs, including embryonic and adult precursor cells of the cerebral cortex and hippocampus.

PDF

Authors: Jeanelle Ariza, Jesus Hurtado, Haille Rogers, Raymond Ikeda, Michael Dill, Craig Steward, Donnay Creary, Judy Van de Water, Verónica Martínez-Cerdeño

(Journal Name, Volume, page#)

Abstract: An association between maternal IgG antibodies reactive against proteins in fetal brain and an outcome of autism in the child has been identified. Using a mouse model of prenatal intra- ventricular administration of autism-specific maternal IgG, we demonstrated that these anti- bodies produce behavioral alterations similar to those in children with ASD. We previously demonstrated that these antibodies bind to radial glial stem cells (RG) and observed an increase in the number of divisions of translocating RG in the developing cortex. We also showed an alteration in brain size and as well as a generalized increased of neuronal volume in adult mice. Here, we used our intraventricular mouse model of antibody administration, followed by Golgi and Neurolucida analysis to demonstrate that during midstages of neurogenesis these maternal autism-specific antibodies produced a consistent decrease in the number of spines in the infragranular layers in the adult cortical areas analyzed. Specifically, in the frontal cortex basal dendrites of layer V neurons were decreased in length and volume, and both the total number of spines—mature and immature—and the spine density were lower than in the control neurons from the same region. Further, in the occipital cortex layer VI neurons presented with a decrease in the total number of spines and in the spine density in the apical dendrite, as well as decrease in the number of mature spines in the api- cal and basal dendrites. Interestingly, the time of exposure to these antibodies (E14.5) coincides with the generation of pyramidal neurons in layer V in the frontal cortex and in layer VI in the occipital cortex, following the normal rostro-caudal pattern of cortical cell generation. We recently demonstrated that one of the primary antigens recognized by these antibodies corresponds to stress-induced phosphoprotein 1 (STIP1). Here we hypothesize that the reduction in the access of newborn cells to STIP1 in the developing cortex may be responsible for the reduced dendritic arborization and number of spines we noted in the adult cortex.

PDF

Authors: Verónica Martínez-Cerdeño, Jasmin Camacho, Jeanelle Ariza, Hailee Rogers, Kayla Horton-Sparks, Anna Kreutz, Richard Behringer, John J. Rasweiler IV and Stephen C. Noctor

(Journal Name, Volume, page#)

Abstract: The organization of the mammalian cerebral cortex shares fundamental features across species. However, while the radial thickness of grey matter varies within one order of magnitude, the tangential spread of the cortical sheet varies by orders of magnitude across species. A broader sample of model species may provide additional clues for understanding mechanisms that drive cortical expansion. Here, we introduce the bat Carollia perspicillata as a new model species. The brain of C. perspicillata is similar in size to that of mouse but has a cortical neurogenic period at least 5 times longer than mouse, and nearly as long as that of the rhesus macaque, whose brain is 100 times larger. We describe the development of laminar and regional structures, neural precursor cell identity and distribution, immune cell distribution, and a novel population of Tbr2+ cells in the caudal ganglionic eminence of the developing neocortex of C. perspicillata. Our data indicate that unique mechanisms guide bat cortical development, particularly concerning cell cycle length. The bat model provides new perspective on the evolution of developmental programs that regulate neurogenesis in mammalian cerebral cortex, and offers insight into mechanisms that contribute to tangential expansion and gyri formation in the cerebral cortex.

PDF

Authors: Verónica Martínez-Cerdeño, Bonnie L. Barrilleaux, Ashley McDonough, Jeanelle Ariza, Benjamin T.K. Yuen, Priyanka Somanath, Catherine T. Le, Craig Steward, Kayla Horton-Sparks and Paul S. Knoepfler

(Journal Name, Volume, page#)

Abstract: Human pluripotent stem cells (hPSC) have great clinical potential through the use of their differentiated progeny, a population in which there is some concern over risks of tumorigenicity or other unwanted cellular behavior due to residual hPSC. Preclinical studies using human stem cells are most often performed within a xenotransplant context. In this study, we sought to measure how undifferentiated hPSC behave following xenotransplant. We directly transplanted undifferentiated human induced pluripotent stem cells (hIPSC) and human embryonic stem cells (hESC) into the adult mouse brain ventricle and analyzed their fates. No tumors or precancerous lesions were present at more than one year after transplantation. This result differed with the tumorigenic capacity we observed after allotransplantation of mouse ESC into the mouse brain. A substantial population of cellular derivatives of undifferentiated hESC and hIPSC engrafted, survived, and migrated within the mouse brain parenchyma. Within brain structures, transplanted cell distribution followed a very specific pattern, suggesting the existence of distinct microenvironments that offer different degrees of permissibility for engraftment. Most of the transplanted hESC and hIPSC that developed into brain cells were NeuN+ neuronal cells, and no astrocytes were detected. Substantial cell and nuclear fusion occurred between host and trans- planted cells, a phenomenon influenced by microenvironment. Overall, hIPSC appear to be largely functionally equivalent to hESC in vivo. Altogether, these data bring new insights into the behavior of stem cells without prior differentiation following xenotransplantation into the adult brain.

PDF

 (Journal Name, Volume, page#)

PDF