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The valproic acid rat model of autism
presents with gut bacterial dysbiosis
similar to that in human autism
Fang Liu1, Kayla Horton-Sparks2, Vanessa Hull2, Robert W. Li3* and Verónica Martínez-Cerdeño2,4,5*

Abstract

Background: Gut microbiota has the capacity to impact the regular function of the brain, which can in turn affect
the composition of microbiota. Autism spectrum disorder (ASD) patients suffer from gastrointestinal problems and
experience changes in gut microbiota; however, it is not yet clear whether the change in the microbiota associated
with ASD is a cause or a consequence of the disease.

Methods: We have investigated the species richness and microbial composition in a valproic acid (VPA)-induced rat
model autism. Fecal samples from the rectum were collected at necropsy, microbial total DNA was extracted, 16
rRNA genes sequenced using Illumina, and the global microbial co-occurrence network was constructed using a
random matrix theory-based pipeline. Collected rat microbiome data were compared to available data derived from
cases of autism.

Results: We found that VPA administration during pregnancy reduced fecal microbial richness, changed the gut
microbial composition, and altered the metabolite potential of the fecal microbial community in a pattern similar to
that seen in patients with ASD. However, the global network property and network composition as well as
microbial co-occurrence patterns were largely preserved in the offspring of rats exposed to prenatal administration of
VPA.

Conclusions: Our data on the microbiota of the VPA rat model of autism indicate that this model, in addition
to behaviorally and anatomically mimicking the autistic brain as previously shown, also mimics the microbiome features
of autism, making it one of the best-suited rodent models for the study of autism and ASD.

Introduction
The gut and brain form the gut-brain axis through bidir-
ectional nervous, endocrine, and immune communication.
A change in one of these systems will most certainly have
effects on the other systems. Disorders in the composition
and quantity of gut microbiota can affect both the enteric
nervous system and the central nervous system [1]. Spe-
cifically, microbiota has the capacity to impact the regular
function of the brain, which can in turn affect the com-
position of microbiota via specific substances. Specific
molecules and metabolic pathways in microbiota have

been shown to be linked to neural development and neu-
rodegenerative disorders, including Parkinson’s disease,
Alzheimer’s disease, Huntington’s disease, schizophrenia,
and multiple sclerosis [1–3].
Valproic acid (VPA) is a medication used for epilepsy

and mood swings. Children prenatally exposed to VPA
have an increased chance of being diagnosed with aut-
ism [4–7]. In addition, VPA exposure leads to acceler-
ated or early brain growth which also occurs in some
cases of autism [8]. Most importantly, VPA causes an al-
teration in the excitation/inhibition the cerebral cortex.
Specifically, rats exposed to VPA in utero present with
an increased glutamatergic and a decreased GABAergic
component in the cortex [9]. The VPA rat model of aut-
ism experiences behavioral, immune, and microbiota
changes similar to those described in patients with aut-
ism. We recently discovered that specific GABAergic
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interneuron types, the parvalbumin (PV)+ Chandelier
(Ch) and PV+ Baskets cells (Bsk) cells, are decreased in
the prefrontal cortex in autism [10, 11]. We also demon-
strated that when VPA is administered via intraperito-
neal injection to pregnant rats at a specific day of
prenatal development with a specific dose (E (embryonic
day) 12.5, 400mg/kg), the offspring of these rats
(“400-E12 VPA rats”) experienced a decrease in the
number of PV+ Ch and PV+ Bsk cells in their adult
cerebral cortex similar to what we found in humans with
autism (under revision). In addition, the 400-E12 VPA
rats also experienced behavioral changes similar to those
exhibited by patients with autism (under revision).
ASD patients suffer from gastrointestinal problems

and experience changes in the gut microbiota, including
shifts in levels of Firmicutes, Bacteroidetes, and Proteo-
bacteria with the abundance of Lactobacillares and Clos-
tridia [12, 13]. Other gut commensals found to be
altered in autism belong to the genera such as Bifidobac-
terium, Lactobacillus, Prevotella, and Ruminococcus [14].
Microbiome changes have been also described in several
mouse models for autism, with one publication in a VPA
mouse indicating a decreased abundance for Bacteroi-
detes in VPA exposed offspring [15]. It is not yet clear
whether the changes in the microbiome associated to
specific disease states are a cause or a consequence of
the disease. Recent studies indicate that gut microbiota
transplantation can transfer behavioral phenotypes, sug-
gesting that the gut microbiota may be a modifiable
factor modulating the development or pathogenesis of
neuropsychiatric conditions. In this study, we investi-
gated changes in microbial richness and microbiome
composition in rats in response to VPA prenatal admin-
istration (400 mg/kg at E12) and found VPA-induced
alterations similar to those seen in autism.

Results
VPA reduces fecal microbial richness of the offspring
A single IP injection of VPA during pregnancy in rats had
a significant effect on fecal microbial richness in their off-
spring (P < 0.05, the Welch t test). In the control rats,
Chao1 value was 1005.62 ± 120.00 (N = 11). VPA in-
jection significantly reduced Chao1 to 925.98 ± 76.62
(N = 10, P < 0.05). However, other microbial diversity
indicators, such as Pielou’s evenness, PD whole tree, and
Shannon and Simpson indices, remained unchanged by
VPA.
In utero VPA exposure also had a profound impact on

fecal microbial structure. At the operational taxonomic
unit (OTU) level, mean Bray-Curtis similarity values (%)
within either the control or VPA groups were 63.57 ± 4.04,
a significantly higher than mean similarity between the
control and VPA groups (59.52 ± 3.24; P = 1.78 × 10−12). A
cluster analysis using the group average approach of the

resemblance values suggested individual microbial com-
munities from the control and VPA groups were able to
form two distinct clusters, respectively (Fig. 1). Together,
our findings suggest that the effect of VPA may be
long-lasting and could have a significant impact on the
fecal microbial community structure in rats prenatally ex-
posed to the toxin.

VPA affects the gut microbial composition
Compared to the control group, VPA treatment sig-
nificantly altered the abundance of 13 higher level
taxa based on linear discriminating analysis (LDA)
scores (the absolute log10 LDA score, or LDA, > 2.0
and P < 0.05 based on the Kruskal-Wallis test), includ-
ing one class (α-Proteobacteria, Fig. 2a), four families
(Fig. 2b, c), and six genera (Fig. 3a, b). For example,
the abundance of α-Proteobacteria was significantly
increased by VPA treatment (Fig. 2a; LDA > 3.4 and
P < 0.05). The abundance of three families, Eubacteria-
ceae (Fig. 2b), Rikenellaceae, and Staphylococcaceae
was also significantly increased by VPA (LDA > 2.0
and P < 0.05). On the other hand, the abundance of
Enterobacteriaceae (Fig. 2c) was significantly repressed
by VPA (LDA = 2.0229 and P = 0.0014). At the genus
level, a significantly higher abundance level of the
genus Anaerotruncus (Fig. 3a) was observed in the
control group than in the VPA group while the VPA
significantly increased the abundance of Allobaculum,
Anaerofustis, Proteus, and Staphylococcus (LDA > 2.0
and P < 0.01; Fig. 3b).
The abundance of at least 100 OTU was significantly

impacted by VPA treatment (LDA > 2.0 and P < 0.05
based on the Kruskal-Wallis test), representing approxi-
mately 10% of all OTU in a given gut microbial commu-
nity (Additional file 1). Together, the relative abundance
of these OTU accounted for approximately 15% of the
fecal microbial community. Intriguingly, 93 of the 100
OTU significantly impacted by VPA belonged to the
class Clostridia. Select OTU with significantly altered
relative abundance by VPA were listed in Table 1. Com-
pared to untreated controls, VPA repressed the abun-
dance of 61 OTU while increasing that of 39 OTU. For
example, 2 OTU assigned to a named species, Rumino-
coccus flavefaciens, ID_1110988 (Fig. 3c) and ID_562599,
were significantly increased by VPA (Fig. 3c). Moreover,
VPA had a profound impact on some of the most pre-
dominant OTU. Two OTU, ID_4296216 and ID_264734,
belonging to the genus Ruminococcus and the family
S24-7, respectively, were significantly increased by VPA;
and both had relative abundance greater than 1.0%.
OTU ID_272080 (Clostridiales, Fig. 3d) and ID_177930
(Lachnospiraceae) were also among the most abundant.
Differences in microbial composition between the

sexes were investigated by comparing male and female
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rats prenatally exposed to VPA with same-sex control rats.
While uneven sample size in the male and female com-
parison may be a concern, the drastic sex-dependent
changes induced by VPA were evident (Fig. 4a, b). At
the phylum level, the abundance of Bacteroidetes was
significantly increased by VPA in males only (LDA =
4.69; P < 0.05) while the abundance of Actinobacteria
was significantly increased by VPA in females only
(LDA = 3.50; P < 0.05), as compared to controls of the
same sex. VPA significantly repressed the abundance
of the class Coriobacteriia while it increased the two
classes Bacteroidia and α-Proteobacteria in males only
(LDA > 2.0 and P < 0.05). The abundance of several
genera was significantly increased by VPA only in fe-
males, including Allobaculum, Bifidobacterium, Odori-
bacter, and Staphylococcus (LDA > 2.6 and P < 0.05).
Intriguingly, the abundance of the genus Candidatus

Arthromitus, a group of the segmented filamentous
bacteria (SFB), was also significantly increased by
VPA in female rats (LDA = 3.774 and P = 0.015) but
not males. There is strong evidence demonstrating
that these gut epithelium-associated bacteria possess
strong abilities to modulate host immune responses.
At the species (OTU) level, VPA prenatal exposure in-

duced significant changes in the relative abundance of 66
and 72 OTU in male and female rats, respectively. Among
them, the abundance of 61 OTU was also significantly im-
pacted by VPA exposure regardless of gender. A total of 9
OTU displayed significant directional changes by VPA in
both male and female rats (Table 2). For example, the rela-
tive abundance of an OTU (GreenGene ID_1110312)
assigned to the order Clostridiales and an OTU (Green-
Gene ID_1110988) assigned to Ruminococcus flavefaciens
was significantly higher in both male and female rats with

Fig. 1 β-diversity in the gut microbial community of rats with or without prenatal valproic acid (VPA) exposure. a Clustering analysis based on
Bray-Curtis similarity. Bray-Curtis similarity matrix based on square-root-transformed abundance at an OTU level. b Principal component analysis
(PCA) based on Bray-Curtis similarity generated using the Vegan package in the R program. Control: rats without prenatal VPA exposure (N = 11).
VPA: rats with VAP exposure (N = 10)

Fig. 2 Microbial taxa displaying significant differences in relative abundance between rats with and without VPA exposure. a The Class
Alpha-Proteobacteria. b The family Eubacteriaceae. c The family Enterobacteriaceae. Straight line, group mean abundance; dotted line,
median. Control: rats without prenatal VPA exposure (N = 11). VPA, rats with VPA exposure (N = 10)
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prenatal VPA exposure (LDA > 3.40; P < 0.001) while 7
other OTU were significantly reduced in fecal microbial
communities of both male and female rats with VPA ex-
posure (LDA > 2.0 and P < 0.05).

VPA alters the metabolite potential of the fecal microbial
community
Among the 5264 predicted KEGG proteins from the rat
fecal microbiome, 4331 proteins were supported by at
least 10 hits. Several proteins belonging to ABC trans-
porters, such as multiple sugar transport system perme-
ase protein (K02025) and ATP-binding cassette,
subfamily B, bacterial (K06147), and RNA polymerase
sigma-70 factor, ECF subfamily (K03088) were among
the most abundant. Compared to the control, VPA injec-
tion repressed the abundance of 11 KEGG proteins, in-
cluding putative ABC transport system ATP-binding
protein (K02003), multiple sugar transport system
substrate-binding protein (K02027), LacI family tran-
scriptional regulator (K02529), methyl-accepting chemo-
taxis protein (K03406), two proteins related to
two-component system, K07718 and K07720, and four
proteins in the peptide/nickel transport system (K02031,
K02032, K02033, K02034; ATP-binding and permease
proteins, respectively).

VPA injection appeared to have a profound impact on
gut microbial metabolic pathways. A total of 29 path-
ways were significantly impacted by VPA (LDA score >
2.0; P < 0.05), resulting in a significantly elevated hit
count for 21 pathways while repressing 8 pathways
(Table 3). For example, the normalized hit counts
assigned to bacterial secretion system, DNA replication,
DNA repairs and recombination proteins, histidine
metabolism, and lipid biosynthesis were significantly
increased by VPA. On the other hand, ABC transporters,
the most abundant pathways in numerous biological
systems, and two-component system, bacterial chemo-
taxis and bacterial motility proteins, were significantly
repressed by VPA.

Microbial co-occurrence patterns and network structure
remain unchanged by VPA
As Table 4 shows, the global network properties as well
as network composition and microbial co-occurrence
patterns in fecal microbial communities of the offspring
between the control and VPA-treated rats were largely
indistinguishable. Both global networks were highly
modular with a modularity between 0.84 and 0.86. Both
networks shared 230 nodes (OTU) or 57.1% of all mem-
bers. The number of large modules with ≥ 10 members

Fig. 3 Select microbial genera and species with significant differences in relative abundance between rats with and without prenatal VPA exposure. a
Anaerotrunus. b Staphylococcus. c OTU assigned to Ruminococcus flavefaciens (GreenGene ID# 1110988). d An OTU belonging to the family
Lachnospiraceae (GreenGene ID# 272080). Straight line; group mean abundance; dotted line, median. Control: rats without prenatal VPA
exposure (N = 11). VPA: rats with VPA exposure (N = 10)
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Table 1 Select OTUs significantly impacted by prenatal VPA injection

OTU_ID Control VPA LDA Annotation

513,445 0.31 ± 0.19 0.56 ± 0.29 3.0954 Bacteroidetes; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides

264,734 0.74 ± 0.54 1.51 ± 1.25 3.6429 Bacteroidetes; Bacteroidia; Bacteroidales; S24-7

581,474 0.00 ± 0.00 0.23 ± 0.33 3.0596 Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Lactobacillus

272,080 1.21 ± 1.03 0.18 ± 0.18 3.7107 Firmicutes; Clostridia; Clostridiales

661,055 0.01 ± 0.01 0.54 ± 1.09 3.4725 Firmicutes; Clostridia; Clostridiales

1,110,312 0.17 ± 0.07 0.72 ± 0.51 3.4043 Firmicutes; Clostridia; Clostridiales

276,770 0.51 ± 0.40 0.03 ± 0.07 3.3477 Firmicutes; Clostridia; Clostridiales

631,564 0.44 ± 0.57 0.01 ± 0.01 3.2945 Firmicutes; Clostridia; Clostridiales

276,777 0.45 ± 0.46 0.12 ± 0.20 3.2476 Firmicutes; Clostridia; Clostridiales

460,611 0.48 ± 0.41 0.18 ± 0.31 3.1188 Firmicutes; Clostridia; Clostridiales

461,487 0.26 ± 0.16 0.52 ± 0.27 3.1123 Firmicutes; Clostridia; Clostridiales

290,338 0.35 ± 0.47 0.15 ± 0.25 3.0820 Firmicutes; Clostridia; Clostridiales

408,877 0.25 ± 0.35 0.03 ± 0.02 3.0675 Firmicutes; Clostridia; Clostridiales

348,404 0.10 ± 0.08 0.31 ± 0.19 3.0249 Firmicutes; Clostridia; Clostridiales

422,727 0.32 ± 0.19 0.12 ± 0.13 3.0146 Firmicutes; Clostridia; Clostridiales

277,208 0.02 ± 0.03 0.22 ± 0.22 3.0105 Firmicutes; Clostridia; Clostridiales

421,893 0.04 ± 0.14 0.27 ± 0.48 3.0056 Firmicutes; Clostridia; Clostridiales

310,760 0.12 ± 0.24 0.84 ± 0.78 3.5307 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae

350,447 0.57 ± 0.46 0.17 ± 0.18 3.2725 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae

177,930 0.83 ± 0.27 0.57 ± 0.30 3.1974 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae

383,971 0.50 ± 0.34 0.21 ± 0.18 3.1159 Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; [Ruminococcus]; gnavus

401,384 0.55 ± 0.29 0.27 ± 0.09 3.1489 Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Oscillospira

461,795 0.04 ± 0.04 0.27 ± 0.27 3.1198 Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Oscillospira

4,296,216 1.07 ± 0.71 2.40 ± 1.66 3.8102 Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Ruminococcus

268,043 0.54 ± 0.52 0.16 ± 0.16 3.2365 Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Ruminococcus

1,110,988 0.00 ± 0.00 0.48 ± 0.38 3.4032 Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Ruminococcus; flavefaciens

Fig. 4 Graphical representation of the taxa with significantly different abundance in the gut microbial community of rats induced by prenatal
VPA exposure. a Male rats with prenatal VPA exposure (VPA) comparing to male rats without prenatal VPA exposure (Control). b Female rats with
prenatal VPA exposure (VPA) comparing to female rats without prenatal VPA exposure (Control). The statistical significance cutoff: absolute linear
discriminant analysis (LDA) score log10≥ 2.0
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Table 2 Nine OTUs displayed a significant difference in relative abundance between control and VPA groups regardless of sex. The
numbers denote relative abundance (mean ± SD)

OTU_ID Control VPA LDA value Annotation

50,208 0.0316 ± 0.0313 0.0000 ± 0.0000 2.1609 Clostridiales

227,788 0.0845 ± 0.0743 0.0000 ± 0.0000 2.6365 Clostridiales

321,960 0.0477 ± 0.0235 0.0000 ± 0.0000 2.3910 Clostridiales; Ruminococcaceae

352,799 0.1134 ± 0.1965 0.0091 ± 0.0059 2.7102 Clostridiales; Lachnospiraceae

450,576 0.0502 ± 0.0400 0.0000 ± 0.0000 2.4470 Clostridiales; Ruminococcaceae

839,137 0.0493 ± 0.0325 0.0215 ± 0.0146 2.1805 Clostridiales; Lachnospiraceae

1,107,799 0.0524 ± 0.0431 0.0073 ± 0.0102 2.3709 Clostridiales

1,110,312 0.1708 ± 0.0684 0.7212 ± 0.5143 3.4043 Clostridiales

1,110,988 0.0001 ± 0.0004 0.4848 ± 0.3770 3.4032 Clostridiales; Ruminococcaceae; Ruminococcus; flavefaciens

Table 3 The microbial pathways significantly impacted by VPA

Pathways Control VPA LDA score P value

ABC transporters 3.29 ± 0.39 3.04 ± 0.24 3.0834 0.0486

Amino acid-related enzymes 1.41 ± 0.01 1.43 ± 0.02 2.0357 0.0039

Bacterial chemotaxis 0.57 ± 0.12 0.47 ± 0.07 2.6664 0.0346

Bacterial motility proteins 1.23 ± 0.27 1.01 ± 0.15 3.0238 0.0411

Bacterial secretion system 0.48 ± 0.02 0.50 ± 0.03 2.1010 0.0167

Carbon fixation pathways in prokaryotes 0.95 ± 0.09 1.03 ± 0.07 2.5883 0.0201

Chaperones and folding catalysts 0.96 ± 0.06 1.01 ± 0.04 2.3375 0.0411

Chromosome 1.51 ± 0.03 1.53 ± 0.02 2.1418 0.0137

Citrate cycle 0.54 ± 0.08 0.62 ± 0.07 2.5479 0.0167

DNA repair and recombination proteins 2.68 ± 0.06 2.75 ± 0.05 2.5379 0.0167

DNA replication 0.62 ± 0.02 0.64 ± 0.02 2.0466 0.0112

DNA replication proteins 1.17 ± 0.03 1.20 ± 0.03 2.2293 0.0346

Flagellar assembly 0.61 ± 0.15 0.48 ± 0.09 2.7850 0.0486

Glycine, serine and threonine metabolism 0.80 ± 0.02 0.82 ± 0.02 2.0011 0.0290

Histidine metabolism 0.63 ± 0.04 0.66 ± 0.02 2.1867 0.0242

Homologous recombination 0.89 ± 0.03 0.93 ± 0.02 2.2693 0.0112

Lipid biosynthesis proteins 0.59 ± 0.03 0.61 ± 0.02 2.0892 0.0486

Oxidative phosphorylation 1.01 ± 0.08 1.08 ± 0.08 2.5044 0.0411

Peptidases 1.90 ± 0.04 1.93 ± 0.03 2.1605 0.0486

Porphyrin and chlorophyll metabolism 0.95 ± 0.04 0.89 ± 0.05 2.4393 0.0201

Protein export 0.55 ± 0.02 0.57 ± 0.02 2.1048 0.0167

Protein kinases 0.34 ± 0.03 0.31 ± 0.02 2.1524 0.0242

Pyrimidine metabolism 1.79 ± 0.03 1.82 ± 0.02 2.2223 0.0242

Riboflavin metabolism 0.19 ± 0.03 0.21 ± 0.02 2.0135 0.0486

Ribosome 2.13 ± 0.07 2.21 ± 0.07 2.6423 0.0167

Terpenoid backbone biosynthesis 0.51 ± 0.02 0.53 ± 0.02 2.0739 0.0201

Transporters 7.52 ± 1.02 6.79 ± 0.66 3.5543 0.0290

Two-component system 1.59 ± 0.13 1.49 ± 0.06 2.6900 0.0290
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in the two networks was identical [12]. Moreover, the
relative proportion (%) of OTU node distributions at the
phylum level was stable between the two networks
(Fig. 5). For example, the most dominant phylum in both
networks were Firmicutes, accounting for 89.6% and
87.6% of all OTU in the control and VPA networks, re-
spectively, which was similar to the percentage of the
OTU assigned to Firmicutes in the microbial communi-
ties prior to network inference (88.3 and 87.5%, in the

control and VPA groups, respectively). Moreover, the
percentage of OTU nodes assigned to Actinobacteria
was 0.50 and 0.49% in the control and VPA networks,
respectively. Some minor yet notable differences existed,
nevertheless. The percentage of OTU nodes assigned to
Proteobacteria was 0.99% and 0.49% in the control and
VPA networks, respectively. Of note, one OTU (Green-
GeneID_1136443) assigned to Mucispirillum schaedleri,
the sole species in the phylum Deferribacteres, was
present in every sample collected in a relatively high
abundance but did not interact with any other OTU in
the communities. As a result, this species was not a
member of either network.
The Z-P scatter plots allowed us to dissect the topo-

logical roles of OTU nodes in the network and infer
their possible ecological function in the fecal microbial
community. As Fig. 6 shows, > 98% of the OTU nodes
in both networks were peripherals with most of their
links lying inside their own modules, based on the Ole-
sen classification [16]. These OTU likely acted as spe-
cialists in the microbial community. A total of six OTU,
all assigned to the order Clostridiales, may function as
generalists in the fecal microbial community of control
rats, including one OTU (GreenGene ID_545038),
assigned to the family Peptostreptococcaceae, acted as a
connector species, linking modules together while other
five OTU were module hubs and may play an important
role for the coherence of its own module. The relative
abundance of the two of the five OTU, GreenGe-
ne_ID_461487 and _1109864, was also significantly al-
tered by VPA administration. In the VPA network, the
OTU acted as connectors and module hubs were com-
pletely different. While all three connectors were from
the order Clostridiales, two of them belonged to the

Table 4 Select topological properties of global networks of
fecal microbial communities of the offspring of rats with prenatal
administration of PBS (Control) and VPA

Network property Control VPA

Total nodes 403 411

Total links 487 488

Modularity 0.856 0.843

Number of modules 55 60

Number of modules with ≥ 10 members 12 12

Average degree (avgK) 2.417 2.375

Average clustering coefficient (avgCC) 0.138 0.087

Average path distance (GD) 9.579 7.169

Geodesic efficiency (E) 0.148 0.185

Harmonic geodesic distance (HD) 6.772 5.398

Maximal degree 13 16

Centralization of degree (CD) 0.026 0.033

Maximal eigenvector centrality 0.268 0.374

Centralization of eigenvector centrality (CE) 0.249 0.359

Density (D) 0.006 0.006

Transitivity (Trans) 0.187 0.117

Connectedness (Con) 0.464 0.340

Fig. 5 Visualization of microbial co-occurrence networks identified using the fast greedy modularity optimization method in the rats with and
without prenatal VPA exposure. a The rats with prenatal VPA exposure (VPA). b Control rats without prenatal VPA exposure. Nodes represent an
OTU. Edge (links) with solid lines, positive connection; dashed lines, negative connection. The color of the nodes indicates the phylum to which
the OTU belong
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family Ruminococcaceae (GreenGene ID_183686 and
_4432234). On the other hand, one of the four module
hubs, GreenGene ID_322723, was from the genus Lacto-
bacillus while other three OTU were from the order
Clostridiales in the VPA network. Overall, we demon-
strated that prenatal administration of VPA reduces fecal
microbial richness, changes the gut microbial compos-
ition, and alters the metabolite potential of the fecal mi-
crobial community in rats. However, the global network
property and network composition as well as microbial
co-occurrence patterns are largely preserved in these
animals.

Materials and methods
VPA administration
Intraperitoneal administration of VPA (valproic acid so-
dium salt, Sigma P4543) was delivered to pregnant Spra-
gue Dawley rats (8 weeks old) at E12.5 (n = 3). Pregnant
control dams of the same age were injected with sterile
saline also at E12.5 (n = 5). The pups of these dams were
the subjects of this study. We collected stool and tissue
samples from 10 VPA offspring and 11 control offspring
equally distributed among groups.

Fecal total DNA extraction
Fecal samples from the rectum were collected from
8-week-old rats at necropsy and snap-frozen in liquid ni-
trogen and stored at − 80 °C freezers until total DNA
was extracted. Microbial total DNA was extracted from
fecal samples using a QIAamp PowerFecal DNA Kit
(Qiagen, Germantown, MD, USA). DNA integrity and
concentration were quantified using a BioAnalyzer 2100
(Agilent, Palo Alto, CA, USA).

Illumina sequencing of 16S rRNA genes
The 16S rRNA gene sequencing was performed as previ-
ously described [17, 18]. The hypervariable V3–V4 regions

of the 16S rRNA gene were directly amplified from 20 ng
of input total DNA using Illumina platform-compatible
PAGE-purified adaptor oligos that contain important fea-
tures including sequencing primers, sample-specific bar-
codes, and 16S PCR primers (forward primer, 341/357F,
CCTACGGGNGGCWGCAG; reverse primer, 805R:
GACTACHVGGGTATCTAATCC). The PCR reaction in-
cluded 1.25 units of AccuPrime TaqDNA Polymerase High
Fidelity (Invitrogen, Carlsbad, CA, USA) in a 25-μl reac-
tion buffer containing 200 nM primers, 200 nM dNTP, 60
mM Tris-SO4, 18mM (NH4)2SO4, 2.0 mM MgSO4, 1%
glycerol, and 100 ng/uL bovine serum albumin (New Eng-
land BioLabs, Ipswich, MA, USA). PCR was performed
using the following cycling profile: initial denaturing at 95
°C for 2min followed by 20 cycles of 95 °C 30 s, 60 °C 30 s,
and 72 °C 60 s. Amplicons were purified using Agencourt
AMPure XP bead kits (Beckman Coulter Genomics, Dan-
vers, MA, USA) and quantified using a BioAnalyzer DNA
7500 chip kit and a QuantiFluor fluorometer. The purified
amplicons from individual samples were pooled in equal
molar ratios. The purified amplicon pool was further
spiked with approximately 25% of whole-genome shotgun
libraries prepared using an Illumina TruSeq DNA sample
prep kit with a compatible adaptor barcode to enhance se-
quence diversity during the first few cycles of sequencing
for better cluster differentiation. The concentration of the
pooled final library pool was quantified using a BioAnaly-
zer high-sensitivity DNA chip kit (Agilent). The library
pool was sequenced using an Illumina MiSeq Reagent Kit
v3 on an Illumina MiSeq sequencer as described previ-
ously. The mean number of 2 × 250 bp pair-end sequences
obtained was 347,849.14 (± 90,627.63, SD, N = 21) per
sample.

Sequence data analysis
The sequence data were preprocessed using MiSeq Con-
trol Software (MCS) v2.4.1. Raw sequences were first

Fig. 6 The scatter plot showing the distribution of OTU based on their topological roles in the network in the gut microbial community of rats with
and without prenatal VPA exposure. a Control. b VPA. Each dot represents an OTU. Z, within-module connectivity. P, Among-module connectivity
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analyzed using FastQC version 0.11.2 to check basic sta-
tistics, such as GC%, per base quality score distribution,
and sequences flagged as poor quality. The four max-
imally degenerate bases (NNNN) at the most 5′ end of
the read pair, which were designed to maximize the di-
versity during the first four bases of the sequencing run
for better identification of unique clusters and improve
base-calling accuracy, were then removed. The presence
of forward and reverse PCR primers at the 5′ and 3′
ends of each sequence read was scanned; the reads with-
out primers were discarded. Chimeric reads were also
removed. The processed pair-end reads were then
merged using PandaSeq v2.8 to generate representative
complete nucleotide sequences (contigs) using default
parameters. The overlapping regions of the pair-end read
were first aligned and scored, and reads with low score
alignments and high rate of mismatches were discarded.
After these quality control steps and filtering proce-
dures, greater than 91% of the input raw sequences
(mean 347,849 reads per sample) retained for subse-
quent analysis.
The QIIME pipeline (v.1.9.1) with the default reference

v. 0.1.3 was used to analyze the 16S rRNA gene sequences.
Both “closed reference” and “open reference” protocols in
the pipeline were used for OTU picking as previously de-
scribed [18]. The rarefaction depth was set to 100,000
quality reads per sample. The default QIIME parameters
were used, except for that the OTU abundance threshold
(lowered to 0.0001%). The GreenGene database (v13.8)
was used for taxonomy assignment (greengenes.lbl.gov).
PyNAST (v1.2.2) was used for sequence alignment.
PICRUSt (v1.0.0), a software package designed to predict
metagenome functional contents from marker gene sur-
veys (Langille et al., 2013), was used with default parame-
ters to predict gene contents and metagenomic functional
information based on the OTU table generated using the
closed-reference protocol in QIIME. Briefly, the OTU
table was first normalized by dividing each OTU by the
known/predicted 16S copy number by using the PICRUSt
workflow: normalize_by_copy_number.py. The gene
contents or the abundance of KEGG Orthology (KO) were
predicted from the normalized OTU table using the
workflow: predict_metagenomes.py. The predicted meta-
genome function was further analyzed by collapsing
thousands of KEGG Orthologs into higher functional cat-
egories (pathways) (categorize_by_function.py). In
addition, specific OTU contributing to a given function or
pathway was identified by using the workflow: metagen-
ome_contributions.py, as described previously [17]. The
linear discriminant analysis effect size (LEfSe) algorithm
was used to identify OTU relative abundance values and
KEGG gene families and pathways that display significant
differences between two biological conditions [19] with a
default cutoff (the absolute log10 LDA score or LDA > 2.0

and P values < 0.05 based on the Kruskal-Wallis test by
ranks).

Network construction and visualization
The global microbial co-occurrence network was con-
structed using a random matrix theory (RMT)-based
pipeline [20, 21]. The OTU detected in < 50% of all sam-
ples were excluded due to a drastic effect of OTU spars-
ity on the precision and sensitivity of network inference
[22]. A similarity matrix, which measures the degree of
concordance between the abundance profiles of individ-
ual OTU across different samples, was then obtained by
using Pearson correlation analysis of the abundance data
[20]. A threshold cutoff value (0.88) was automatically
determined by calculating the transition from Gaussian
orthogonal ensemble to Poisson distribution of the
nearest-neighbor spacing distribution of eigenvalues, in
the pipeline and then applied to generate an adjacent
matrix for network inference [21]. The fast-greedy
modularity optimization procedure was used for module
separation. The within-module degree (Z) and among-
module connectivity (P) were then calculated and plot-
ted to generate a scatter plot for each network to gain
insights into the topological roles of individual nodes in
the network according to the Olesen classification [21].
The network structure was finally visualized using
Cytoscape v3.6.1.

Discussion
The gut and brain form the gut-brain axis through bidir-
ectional nervous, endocrine, and immune communica-
tions. Mammalian species often contain similar
microbiome richness at the level of phylum, but diversity
and richness of species are highly variable among indi-
viduals [23]. This variability is determined by many fac-
tors, including genetics, environment, diet, disease,
stress, and age [24]. When microbiota composition is al-
tered due to any of these factors, the function of the in-
testinal mucosal barrier is reduced; and bacterial
products such as amyloids and lipopolysaccharides leak,
increasing the permeability of the blood brain barrier,
which, in turn, affects the central nervous system [25].
Humans with autism and mice models of autism have

shown significant alterations in their microbiota compos-
ition. Children with autism present with more GI symp-
toms than typically developing children, and the severity
of their GI symptoms is correlated to the severity of their
behavioral symptoms [26, 27]. These children also demon-
strate bacterial dysbiosis, which has been suggested to play
a role in autism’s etiology [28]. While different studies
have found changes in specific bacteria are often associ-
ated to dysbiosis in autism, it is generally accepted that
the gut microbial community of patients with autism dis-
plays a higher relative abundance of Lactobacillacease and
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Clostridia and a reduced incidence of the Prevotella and
other fermenters [29–35].
Studies in mice have allowed to better understand the

role of the microbiota in autism [36]. The lack of micro-
biota produces changes in behavior. For example,
germ-free mice lack a preference for spending time with
another mouse over spending time in an empty chamber
and deviate from the experimental expectation that they
would spend more time exploring a space containing a
new mouse rather than a familiar mouse [37, 38].
Germ-free mice also show a differential gene expression
associated with neuronal structure and function in the
amygdala [39]. Germ-free rats present with a social def-
icit phenotype in the reciprocal social interaction test
[40]. Antibiotic treatment in wildtype and mouse models
of autism also affects social behavior [15, 41, 42]. On the
other hand, the use of probiotics ameliorates behavioral
deficits [38, 42]. Together, these data point out a role of
microbiota in regulating behavior. The nature of micro-
biota has been studied in several mouse models for aut-
ism. The inbred mouse, BTBR, that presents with the
full spectrum of ASD-like behavior, shows an overall de-
crease in bacterial diversity characterized by an increase
in the relative abundance of the genus Akkermansia and
a decrease in abundance of Bifidobacterium and Clostri-
diales [43–45]. In addition, BTBR mice have impaired
intestinal integrity and a deficit in the intestinal tight
junction proteins Ocln and Tjp1 [46]. Environmental
mice models of autism have also produced information
about the importance of microbiota in this condition. In
the maternal immune activation (MIA) mouse model,
the species richness did not differ significantly between
control and MIA offspring, but the offspring displayed
decreased intestinal barrier integrity, altered gut micro-
biota, and increased abundance of the families Lachnos-
piraceae, Porphyromonadaceae, and Prevotellaceae [47].
In the maternal high-fat diet (MHFD) mouse model for
autism, the diversity of the microbiota was decreased
compared to the control group, with marked decreased
in Lactobacillus, Parabacteroides, Helicobacter, and B.
uniformis. In this study, we demonstrated that species
richness in the fecal microbial community in the
autistic-like rat model, the 400-E12 VPA rat, was signifi-
cantly reduced. Using next-generation sequencing tech-
nology in a murine autism model, it was reported that
the microbiome composition in mice in utero exposed
to VPA presented with a decreased of Bacteroids [15].
Other gut commensals found to be altered in the
VPA mice were Deltaproteobacteris and Erysipelotri-
chales. These changes in VPA mouse microbiota com-
position were coincident with changes in behaviors
linked to autism [15].
Our 400-E12 VPA rats showed a decrease in microbial

diversity (species richness). Specifically, significant increases

in the abundance of α-Proteobacteria, Eubateriaceae, Rike-
nellaceae, and Staphylococcaceae. On the other hand, En-
terobacteriaceae was significantly decreased by VPA
exposure in utero. At the genus level, we found a signifi-
cantly higher abundance of the genus Anaerotruncus in the
control group and a significantly increased abundance of
the genera Allobaculum, Anaerofustis, Proteus, and
Staphylococcus in the VPA group.
This is the first time the microbial species richness and

microbiome composition have been studied in a rat model
for autism, the 400-E12 VPA rat. The decrease in micro-
bial diversity in this rat model was consistent with the ob-
servations in human autism and most of the mouse
models of autism studied to date. The gut microbial com-
position was largely similar to that of humans with autism
and murine autism-like models. The enteric bacteria, es-
pecially the class Clostridia, are known to play an import-
ant role in children with autism (Frye et al. 2015). In our
study, Clostridia is the most dominant class in the rat fecal
microbial community, accounting for more than 60% of
all sequence reads, followed by the class Bacteroidia with
more than 30% of the sequences. Among the 100 OTU
significantly impacted by prenatal VPA administration, the
vast majority of them, 94, belonged to Clostridia, suggest-
ing that ecological manipulation via antibiotics or pre- or
pro-biotic approaches targeting this class of gut bacteria
may prove effective in alleviating autism symptoms. A sig-
nificant reduction in microbial species richness, such as
Chao1, in the 400-E12 VPA rats was consistent with the
observation in BTBR T+Itpr3tf/J mouse model of autism
[44]. However, biodiversity encompasses both species rich-
ness and evenness as well as interactions among species in
the ecosystem [16]. While a marked reduction in species
richness was evident in the rats with prenatal VPA expos-
ure, species evenness in the rat gut microbial community
did not appear to be impacted. Furthermore, the microbial
co-occurrence patterns and microbial interactions in the
community appeared to be preserved in the rats with pre-
natal VPA exposure.
Moreover, our findings provide further evidence of

sex-specific alterations of gut microbiome by prenatal
VPA administration in rodents [15]. For example, in male
rats, the abundance of the family Coriobacteriaceae as well
as the class Coriobacteriia was significantly repressed by
VPA. An OTU (GreenGene ID_1113282), belonging to
Mollicutes, was significantly increased by VPA. On the
other hand, a twofold increase in the relative abundance
of the phylum Proteobacteria, from 1.03% in the control
rats to 2.17% in the male rats with VPA exposure, was ob-
served. The VPA-induced increase became more evident
in the class α-Proteobacteria, from 0.14% in the control
male rats to 0.56% in the male rats with prenatal VPA ex-
posure. The Proteobacteria are known to be a marker for
an unstable microbial community and a risk factor of
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human disease [48, 49]. An elevated Proteobacteria level is
frequently associated with metabolic disorders and intes-
tinal inflammation. The pathological relevance of elevated
Proteobacteria abundance in autism warrants further in-
vestigation. In contrast to male rats, prenatal VPA expos-
ure induced a distinguishingly different set of microbial
taxa in female rats. The abundance of the genus Staphylo-
coccus and the family S24-7 was significantly increased by
prenatal VPA exposure only in female rats. A significant
elevation of Candidatus Arthromitus, which harbors com-
mensal SFB, by VPA was observed only in female rats.
Numerous studies have established solid links between
SFB colonization and human disease [50]. As a potent in-
ducer of IgA production and TH17 immune responses as
well as innate immunity, SFB may play a role in the patho-
genesis of autism. Indeed, a recent study shows that preg-
nant mice colonized with SFB were more likely to
produce offspring with maternal immune activation
(MIA)-associated abnormalities [41].
The composition of the microbiota is of great importance

to the function of the brain. Bacteria can regulate brain
function through several mechanisms. Some bacteria, such
as Bifidobacterium and Lactobacillus, that inhabit in the
gut, have the capacity to produce anti-inflammatory cyto-
kines, while other, such as Clostridium and Ruminococcus
[51], can produce pro-inflammatory cytokines. Metabolic
products of the gut microbiota, such as short-chain fatty
acids, have also been implicated in autism. Gut microbiota
has been suggested to regulate many nervous functions in-
cluding neurogenesis, differentiation, myelination, forma-
tion and integrity of the blood-brain barrier, neurotrophin
and neurotransmitter release, apoptosis, gap junction modi-
fication, and synaptic pruning [52]. Moreover, several
microRNAs participate in signaling networks through the
intervention of the gut microbiota [53]. In addition, gut
microbiota release inflammatory cytokines that can act as
epigenetic regulators and regulate gene expression being a
factor for example in cancer risk and diabetes-associated
autoantigens [54–56]. Here, we demonstrated that VPA
also alters the metabolite potential of the microbial com-
munity in rats. VPA prenatal administration significantly el-
evated 21 bacterial pathways while repressing 8 pathways.
Among them, there was an increase in activation of the
bacterial secretion system, DNA replication, DNA repairs,
and recombination proteins and a decrease in ABC bacter-
ial transporter pathways. These data indicate a potentially
higher activity of those pathways related to bacterial sur-
vival and function.
In conclusion, our data on the gut microbial community

of the 400-E12 rats in response to prenatal VPA exposure
indicate that this model, in addition to demonstrating be-
havioral and anatomical similarities to autism, also mimics
the microbiota features of autism, making it one of the
best-suited rodent models for the study of autism.
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