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Abstract
The cognitive phenotype of autismhas been correlatedwith an altered balance of excitation to inhibition in the cerebral cortex,
which could result from a change in the number, function, or morphology of GABA-expressing interneurons. The number of
GABAergic interneuron subtypes has not been quantified in the autistic cerebral cortex. We classified interneurons into 3
subpopulations based on expression of the calcium-binding proteins parvalbumin, calbindin, or calretinin. We quantified the
number of each interneuron subtype in postmortem neocortical tissue from 11 autistic cases and 10 control cases. Prefrontal
BrodmannAreas (BA) BA46, BA47, and BA9 in autismand age-matched controlswere analyzed by blinded researchers.We show
that the number of parvalbumin+ interneurons in these 3 cortical areas—BA46, BA47, and BA9—is significantly reduced in
autism compared with controls. The number of calbindin+ and calretinin+ interneurons did not differ in the cortical areas
examined. Parvalbumin+ interneurons are fast-spiking cells that synchronize the activity of pyramidal cells through
perisomatic and axo-axonic inhibition. The reduced number of parvalbumin+ interneurons could disrupt the balance of
excitation/inhibition and alter gamma wave oscillations in the cerebral cortex of autistic subjects. These data will allow
development of novel treatments specifically targeting parvalbumin interneurons.
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Introduction
Autism spectrum disorders (ASDs) are defined by a pattern of
qualitative abnormalities in reciprocal social interaction, com-
munication, and repetitive interest and behavior. Recent esti-
mates indicate that 1 in 68 children in the USA suffer from ASD
(Baio 2012). ASDs occur in all racial, ethnic, and socioeconomic
groups, yet on average are 4 to 5 times more likely to occur in
boys than in girls. Classical autism is the most common condi-
tion among ASDs. Autism symptoms cover awide spectrum, ran-
ging from individuals with severe impairments who may be
silent and mentally disabled, to high functioning individuals
who suffer from mild impairments in social approach and

communication. The wide range of manifestations of autism
likely arises from distinct etiologies. While the etiology of autism
and ASD remains poorly understood, it is commonly thought to
result from genetic, environmental, and/or immune factors
(Mandy 2016; Martinez-Cerdeno 2016; Schaefer 2016).

Altered functioning of several areas of the brain is thought to
underlie the social and cognitive phenotype in autism. Identified
brain regions include the prefrontal and temporal cerebral cortex,
hippocampus, amygdala, striatum, and cerebellum, among
others.Within the prefrontal cortex (PFC) areas implicated in aut-
ism include: BA9—involved in working and spatial memory, ver-
bal fluency, auditory and verbal attention, and attributing
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intention; BA46—also known as dorsolateral PFC, which plays a
role in attention and working memory; and BA47—which is in-
volved in processing syntax in oral and sign languages. The cog-
nitive functions served by areas BA46, BA47, and BA9 are
impaired in autism (Romanski 2007; Dumontheil et al. 2008; Sha-
lom 2009; Teffer and Semendeferi 2012; Dixon and Christoff 2014;
Dumontheil 2014; Jeon 2014). Whether and how cytoarchitecture
in these regions of the brain is altered in autism, particularly the
cortical areas, is not well understood. Possible alterations in cor-
tical structures that underlie the autism phenotype range from
impaired formation and functioning of synapses, to altered num-
bers of neurons and/or glial cells. In agreement with the latter
concept, early brain overgrowth in autism has been theorized
to result fromalteration in cellular numbers in the cerebral cortex
(Courchesne et al. 2011).

EEG recordings from the cerebral cortex of autistic patients ex-
hibit an alteration of induced gamma activity patterns (Belmonte
and Yurgelun-Todd 2003; Brown et al. 2005; Oberman et al. 2005;
Orekhova et al. 2007; Cohen et al. 2009; Milne et al. 2009; Russo
et al. 2009; Thatcher et al. 2009). The gamma activity pattern in
autistic subjects indicates an imbalance in the ratio of excita-
tion/inhibition in the cerebral cortex. Published evidence sug-
gests that this ratio may be pushed in either direction—either
too much excitation or too much inhibition—depending on
underlying cause(s). For example, data indicating that a de-
creased ratio of excitation/inhibition (increased inhibition) un-
derlies the cognitive phenotype in autism have been reported
in a mouse model of Rett Syndrome in mice lacking MeCP2
(Dani et al. 2005), and in mice that express the human allele of
Neuroligin3, a gene defect associated with some cases of autism
(Tabuchi et al. 2007). On the other hand, evidence that an in-
creased ratio of excitation/inhibition (increased excitation) un-
derlies the cognitive phenotype of autism is supported by the
prevalence of epilepsy in autistic patients (Francis et al. 2013).
The cause of these functional changes is not well understood.
Possible mechanisms that could alter the balance of excitation/
inhibition include a change in the number of excitatory pyram-
idal neurons and/or inhibitory interneurons in discrete regions
of the cerebral cortex. Altered numbers of a given cortical neuron
subtype in a specific region of the cortex could alter the pattern of
cortico-cortical connections and produce disturbances in cogni-
tive functioning (Rubenstein and Merzenich 2003; Polleux and
Lauder 2004; Cline 2005). Indeed, animal models that exhibit an
imbalance in the ratio of pyramidal neurons to interneurons in
the neocortex show behavioral features that are consistent with
autism, including reduced social interaction and increased anx-
iety (Helmeke et al. 2008).

Several studies have examined the number of cells in various
regions of the autistic brain, including the number of pyramidal
neurons and von Economo neurons in prefrontal, temporal,
and fusiform cortical areas. Some studies have found an altered
number of pyramidal neurons or von Economo neurons in the
cerebral cortex, while other studies have not reported abnormal-
ities (Casanova et al. 2002, 2010; Mukaetova-Ladinska et al. 2004;
Kennedy et al. 2007; van Kooten et al. 2008; Courchesne et al.
2011; Santos et al. 2011; Camacho et al. 2014; Uppal et al. 2014;
Kim et al. 2015). An alteration in the number of neurons in
other brain structures, including the cerebellum and amygdala,
has also been correlated with autism (Fatemi et al. 2002; Schu-
mann and Amaral 2005, 2006; Whitney et al. 2008, 2009; Skefos
et al. 2014; Wegiel et al. 2014). However, to the best of our knowl-
edge, there has not yet been a study specifically designed to
quantify the number of interneurons, and interneuron subtypes,
in the cerebral cortex in autism. An alteration in the number of

interneurons, or interneuron subtypes, could alter the balance
of excitation/inhibition in the cerebral cortex. Supporting this
concept, mice with null mutations in the Dlx1 gene show a loss
of specific interneuron subtypes and have reduced inhibition
and epilepsy—symptoms that are commonly seen in autism
(Cobos et al. 2005; Levisohn 2007; Rubenstein 2010).

Interneurons in the cortex exhibit a wide variety of morpho-
logical, physiological and molecular characteristics. In post-
mortem tissue interneurons can be classified on the basis of
the expression of specific molecular markers. For example, dis-
tinct groups of interneurons can be identified using 5 markers
specific for parvalbumin (PV), somatostatin (SOM), neuropeptide
Y (NPY), cholecystokinin, and vasoactive intestinal peptide (VIP).
This approach identifies the following subgroups of interneur-
ons: 1) PV+ cells, such as chandelier and basket cells; 2) SOM+
cells, such as Martinotti cells; 3) cells that express NPY but not
SOM; 4) cells that express VIP; and 5) cells that express chole-
cystokinin but not SOM or VIP. These 5 interneuron subtypes
can be further subdivided based on a variety of characteristics
(see DeFelipe et al. 2014). An alternative approach classifies inter-
neurons into 3 main subtypes based on their expression of the
proteins parvalbumin (PV), calbindin (CB), and calretinin (CR),
(Hof et al. 1999). These markers identify 3 subpopulations of dis-
tinct interneurons that are defined by their morphology, laminar
distribution in the cerebral cortex, physiological properties, con-
nectivity, and developmental origin (Kubota et al. 1994; Cauli
et al. 1997; del Rio and DeFelipe 1997; DeFelipe 1997; Leuba and
Saini 1997; Hof et al. 1999; DeFelipe et al. 2013).

Neurons immunoreactive for PV are mostly chandelier cells
and large basket cells; those immunoreactive for CR are bipolar
cells, double bouquet cells, and Cajal–Retzius cells; and those im-
munoreactive for CB are double bouquet cells. In addition, some
CB+ cells have been identified as neurogliaform cells and others
as Martinotti cells in the monkey PFC (Conde et al. 1994; DeFelipe
1997). The approach of classifying cortical interneurons into 3
subsets based on PV, CR, or CB expression does not exclude inter-
neurons that express other interneuron markers such as SOM,
NPY, or VIP. For example, SOM+ interneuronswould be accounted
for primarily within the CB+ subset and to a lesser degree within
the PV+ and CR+ subsets (Kubota et al. 1994; Kawaguchi and Ku-
bota 1997; Nassar et al. 2015). Previous studies have used this
method to comprehensively identify interneuron subpopula-
tions in the cortex of mammalian species (Hof et al. 1999) and
to identify interneuron subpopulations in human cortical tissue
obtained frompatientswith certain diseases. For example, Kuchu-
khidze and colleagues quantified the number of PV+, CB+, andCR+
cells in patients with cortical dysplasia and reported an increased
number of PV+ cells in the lateral temporal cortex (Kuchukhidze
et al. 2015). To investigate whether there are changes in the num-
ber or proportion of interneuron subpopulations in the cerebral
cortex in autism, we chose to collect data using themore straight-
forward and easier to implement approach that classifies inter-
neurons based on their expression of the PV, CR, and CB
calcium-sequestering proteins. Determining whether there is a
change in the number of interneurons or interneuron subtypes
in autism is a fundamental step that will shed light on the origins
of the altered excitation/inhibition balance in the autistic cerebral
cortex and, this in turn, may yield new therapeutic interventions.

Results
We identified prefrontal Brodmann areas BA9, BA46, and BA47 in
cerebro-cortical tissue samples obtained from 11 autism and 10
control, age-matched cases (Table 1). The tissue was obtained
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Table1 Clinical characteristics of postmortem cases, including sex, age, diagnosis, postmortem interval (PMI), brain mass, hemisphere, cause of death, the presence of seizures or mental retardation,
and repetitive, verbal, non-verbal, and social scores for the autism cases

Case ID Sex Age Diagnosis PMI
(hours)

Brain
mass (g)

Hemisphere Cause of death Seizure Mental
retardation

Rept.
score

Verbal
score

Nonverbal
score

Social
score

UCD-13AP86 M 6 Control NK NK NK NK NA NA NA NA NA NA
AN07444 (B7387) M 17 Control 30.75 1460 Right Asphyxia NA NA NA NA NA NA
AN00544 (B6951) M 17 Control 28.92 1250 Left NK NA NA NA NA NA NA
AN19760 (B5873) M 28 Control 23.25 1580 Right NK NA NA NA NA NA NA
AN12137 (B5352) M 31 Control 32.92 1810 Right Asphyxia NA NA NA NA NA NA
AN15566 (B6316) F 32 Control 28.92 1360 Right NK NA NA NA NA NA NA
AN05475 (B7561) M 39 Control NK 1350 Right Cardiac arrest NA NA NA NA NA NA
AN17868 (B5812) M 46 Control 18.78 1588 Right Cardiac arrest NA NA NA NA NA NA
AN19442 (B6259) M 50 Control 20.4 1740 Right NK NA NA NA NA NA NA
AN13295 (B6860) M 56 Control 22.12 1370 Left NK NA NA NA NA NA NA
AN03221 (B6242) M 7 Autism 11.42 1560 NK Drowning No No 8 16 NA 27
AN01293 (B6349) M 9 Autism 4.41 1690 Left Cardiac arrest No Yes 5 NA 12 26
AN00394 (B4323) M 14 Autism 10.3 1615 NK Cardiac arrest No No NK NK NK NK
An02736 (B5891) M 15 Autism 2.5 1390 Right Aspiration Yes No NK NK NK NK
AN00764 (B5144) M 20 Autism 23.66 1144 Right Accident No No NK NK NK NK
AN00493 (B5000) M 27 Autism 8.3 1575 Right Drowning No Yes NK NK NK NK
AN18892 (B4871) M 31 Autism 99 1600 Left Gun shot No No NK NK NK NK
AN09901 (B5764) M 32 Autism 28.65 1694 Right Heat shock No No NK NK NK NK
AN06746 (B4541) M 44 Autism 30.8 1530 NK Cardiac arrest No No NK NK NK NK
AN19534 (B6143) M 45 Autism 40.16 1360 Right Aspiration Yes No 4 NA 14 27
AN18838 (B6202) M 48 Autism NK 1260 Right Asphyxia No Yes 8 NA 14 29

NK, not known; NA, not applicable.
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from the Autism Tissue Program (ATP) and the UC Davis Medical
Center. The autistic cases were all diagnosed as classical autism.
The diagnosis of autismwas confirmed by standard postmortem
use of the autism diagnostic interview-revised (ADI-R) in all
cases. The control cases were determined to be free of neuro-
logical disorders, including autism, based on medical records
and information gathered at the time of death from next of kin.
Cases were all males, except for 1 control case. Age, hemisphere,
brain weight, severity of symptoms, and postmortem interval
varied from case to case (Table 1). Control cases averaged 32.2
years with a range of 6–56 years. Autism cases averaged 26.5
with a range of 7–48 years. Two of the subjects with autism
suffered from seizures and 3 from mental retardation (Table 1).
Control patients did not have a history of seizures,mental retard-
ation, or dementia.

Based on Brodmann cortical neuroanatomy, we isolated a
block containing BA9 in the superior PFC, BA46 in the middle
PFC, and BA47 in the inferior PFC, from each case (Fig. 1A). We
cut the tissue into 14 µm sections on a cryostat, stained 1 section
withNissl (Fig. 1D), and based on cytoarchitecture selected the re-
gion in each section that matched the von Economo description
for BA9 (FDm), BA46 (FDΔ), and BA47 (Ffα). See “Anatomical and
cytoarchitectural considerations” in Methods (Fig. 1B). We used
thin-cut slices of 14 µm to obtain a single layer of cells for quan-
tification. A single cell layer avoids overlapping cells and reduces
quantification errors, such as counting 2 overlapping cells as only
one cell. In addition, thin-cut sections allowed us to obtain more
sections per block of tissue to increase data yield for additional
experiments. This is very important since there is a severe lack
of tissue from autism subjects currently available for research.

Since we had access to small blocks of tissue that did not en-
compass entire BAs, we could not apply stereological methods.
We therefore used an approach based on quantifying total inter-
neuron cell number in 3 mmwide bins that encompassed the en-
tire thickness of the cortical gray matter within representative
samples of each BA. Within each selected BA of interest, we
chose a bin that was 3 mmwide that extended from the pial sur-
face through the thickness of the gray matter to include all cor-
tical layers (Fig. 1C). To ensure that we obtained representative
samples of interneuron populations in each Brodmann area, we
ran replication studies to quantify interneuron cell number in a
second 3 mm bin selected from a different region of each BA
(Fig. 1C). As in the primary study, bins in the replication study
were selected in Nissl-stained sections (Fig. 1C). For both primary
and replication studies, we performed triple immunostaining for
PV, CB, and CR using Nova Red (pink), DAB (brown), and Vector
Blue (blue) substrates to identify immunolabeled cells on sec-
tions that were directly adjacent to the Nissl-stained sections.
We quantified and compared the number of interneuron types
in the primary and replication study and found that interneuron
number and percentages did not differ between studies within
each BA for each case, indicating that the selected region to
study was representative of each BA as a whole.

We used monoclonal antibodies for PV and CB, and a poly-
clonal antibody for CR for our analysis. To test the specificity of
these antibodies, we ran avalidation study and compared the im-
munostaining we obtained in tissue sections of control BA46,
BA47, and BA9 tissue with that produced by a second set of
anti-PV, CB, and CR antibodies. The second set of antibodies in-
cluded polyclonal PV and CB antibodies, and a monoclonal CR
antibody. We compared results obtained from the first and se-
cond sets of antibodies by quantifying the number of PV+, CR+,
and CB+ cells in bins from 3 slices of PFC from 3 cases. We com-
pared the number of immunopositive cells obtainedwith the first

and second sets of antibodies and found essentially the same
number of interneurons, supporting the specificity of the anti-
bodies chosen for the experimental work.

Figure 1. Cortical areas investigated in this study. Blocks of prefrontal cortical

tissue containing BA9, BA46, and BA47 were isolated based on Brodmann and

von Economo analysis. The cytoarchitectonic region that exactly matched the

von Economo description for cortical areas (BA9/FDm; BA46/FDΔ; and BA47/Ffα)

was selected in coronal sections prepared from each case. (A) Brodmann areas

in the cerebral cortex. The line represents the plane of sectioning used to obtain

cortical sections. (B) A line drawing of a coronal section used in this study.

Brodmann areas 9, 46, and 47 are indicated with black boxes. (C) Regions of

Brodmann areas 9, 46, and 47 analyzed in the primary and replication studies

are indicated with “box 1” and “box 2” in each BA. (D) Nissl-stained sections of

areas BA46, BA47, and BA9. Hash marks on the left side of each image demark

boundaries of Layer 1, the supragranular layers, Layer IV, and the infragranular

layers and the white matter. Scale bar in D: 200 µm.
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Once we had validated our method and the antibodies, we
performed triple immunostaining for PV, CB, and CR and coun-
terstained the tissue with Nissl substance to label the nuclei of
all neurons and glia and the soma of all neurons in all the autism
cases and all the control cases. We quantified the number of PV+
(pink), CB+ (brown), and CR+ (blue) cells, and of double and triple-
labeled cells for each marker within the area of interest (Fig. 2).

We compared the number of each cell type in autism and control
cases. One of the autism cases (20 years old) was not analyzed for
BA47 due to histological abnormalities. The number of double-
labeled cells was minimal across subjects, <1% of interneurons
in each area (Fig. 3D).

Using light microscopy with a ×100 lens, we quantified the
total number of each interneuron subtype within each bin and

Figure 2. Image showing a section of prefrontal cerebral cortex triple immunostained with antibodies against PV (pink), CR (blue), CB (brown), and counterstained with

Nissl. (A) Image showing clear differentiation of PV (dark pink/violet), CR (blue), CB (brown) labeled interneurons and Nissl-stained cells (light purple). (B–D) High-power

magnification image showing labeled PV+ interneurons (dark pink: 1, 4, 10); CR+ interneurons (blue: 2, 5, 7, 9, 11); andCB+ interneurons (brown: 3, 6, 8). (E) PV+ interneurons

(dark pink). (F) CR+ interneurons (blue). (G) CB+ interneurons (brown). (H1–H6) Examples of double immunolabeled interneurons: 1, CR+/CB+ (blue/brown); 2, CR+/PV+

(blue/dark pink); 3, CB+/PV+ (brown/dark pink); 4, CR+/CB+ (blue/brown); 5, CR+/PV+ (blue/dark pink); 6, CB+/PV+ (brown/dark pink). (I) Representative diagrams

depicting the location of PV+ interneurons (pink), CR+ interneurons (blue), and CB+ interneurons (brown) in bins from autistic and control cases in each BA. Scale bar

in A = 100 µm, in D (B–D) = 25 µm, In F (E–H): 25 µm, I = 250 µm.

Figure 3. Percentage of parvalbumin+ (PV+) cells in Brodmann areas (BA) 46, 47, and 9 in autistic (AU) and control (CT) brains. The percentage of PV+ cells in autistic cases

was significantly lower in BA46, BA47, and BA9 than in control cases. The degree of significance is indicated with asterisks: ***P < 0.001; *P < 0.05.
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