Manuscripts here.


PUBLICATIONS








Abstract. This is a report of FMR1 premutation with Prader-Willi phenotype (PWP) and FXTAS. Although the PWP is common in fragile X syndrome (FXS), it has never been described in someone with the premutation. The patient presented intranuclear inclusions, severe obesity, hyperphagia, and ADHD symptoms, typical of the PWP in FXS. In addition, the autopsy revealed multiple architectural cortical abnormalities.

Manuscripts here.


Abstract. Background: Fragile X-associated tremor/ataxia Syndrome (FXTAS) is an adult-onset disorder associated with premutation alleles of the FMR1 gene. The disorder is characterized by progressive action tremor, gait ataxia, and cognitive decline. FXTAS pathology includes dystrophic white matter and intranuclear inclusions in neurons and astrocytes. We previously demonstrated that the transport of iron into the brain is altered in FXTAS; therefore, we also expect an alteration of iron metabolism in brain areas related to motor control. Iron is essential for cell metabolism, but uncomplexed iron leads to oxidative stress and contributes to the development of neurodegenerative diseases. Objectives: We investigated a potential iron modification in the striatum, the structure that participates in motor learning and performance, in FXTAS. Methods: We used samples of putamen obtained from 9 FXTAS and 9 control cases to study iron localization using Perl׳s method, and iron-binding proteins using immunostaining. Results: We found increased iron deposition in neuronal and glial cells, which accumulate iron, in the putamen in FXTAS. We also found a generalized decreased of the amount of the iron-binding proteins, transferrin and ceruloplasmin, in the putamen, and decreased numbers of neurons and glial cells that contained ceruloplasmin. However, we found increased levels of iron, transferrin, and ceruloplasmin in microglial cells, indicating the attempt by the immune system to remove the excess iron. Conclusions: Overall, there is a deficit in proteins that eliminate extra iron from the cells with the concomitant increased in the deposit of cellular iron.

Manuscripts here.


Abstract. BACKGROUND: Autism is not correlated with any neuropathological hallmark as the brain of autistic individuals lack defined lesions. However, previous investigations have reported cortical heterotopias and local distortion of the cytoarchitecture of the neocortex in some cases of autism. CASE PRESENTATION: Our patient was a 40-year-old white woman diagnosed at an early age with autism and mental retardation. Pencil fibers were present within the prefrontal cortex (Brodmann area 47) and its composition resembled that of the underlying white matter region. Pencil fibers encompassed most of the extent of the cortical grey matter and were populated by oligodendrocytes, astrocytes, and microglial cells, but not by neurons. CONCLUSIONS: Here we report a new cytoarchitectural abnormality that has not been previously described in autism. Future pathological examinations should keep in mind the potential presence of pencil fibers within the prefrontal cortex of cases with autism.

Manuscripts here.


Abstract. BACKGROUND: An interneuron alteration has been proposed as a source for the modified balance of excitation / inhibition in the cerebral cortex in autism. We previously demonstrated a decreased number of parvalbumin (PV)-expressing interneurons in prefrontal cortex in autism. PV-expressing interneurons include chandelier (Ch) and basket (Bsk) cells. We asked whether the decreased PV+ interneurons affected both Ch cells and Bsk cells in in autism. The lack of single markers to specifically label Ch cells or Bsk cells presented an obstacle for addressing this question. We devised a method to discern between PV-Ch and PV-Bsk cells based on the differential expression of Vicia villosa lectin (VVA). VVA binds to N-acetylgalactosamine, present in the perineuronal net surrounding some cell types, which plays a role in intercellular communication. N-acetylgalactosamine is present in the perineuronal net surrounding Bsk but not Ch cells. We found that the number of Ch cells is consistently decreased in the prefrontal cortex of autistic (n =10) when compared to control (n= 10) cases, while the number of Bsk cells is not as severely affected. This finding expand our understanding of GABAergic system functioning in the human cerebral cortex in autism, which will impact translational research directed towards providing better treatment paradigms for individuals with autism.

Manuscripts here.


Abstract. Dendrites and spines are the main neuronal structures receiving input from other neurons and glial cells. Dendritic and spine number, size, and morphology are some of the crucial factors determining how signals coming from individual synapses are integrated. Much remains to be understood about the characteristics of neuronal dendrites and dendritic spines in autism and related disorders. Although there have been many studies conducted using autism mouse models, few have been carried out using postmortem human tissue from patients. Available animal models of autism include those generated through genetic modifications and those non-genetic models of the disease. Here, we review how dendrite and spine morphology and number is affected in autism and related neurodevelopmental diseases, both in human, and genetic and non-genetic animal models of autism. Overall, data obtained from human and animal models point to a generalized reduction in the size and number, as well as an alteration of the morphology of dendrites; and an increase in spine densities with immature morphology, indicating a general spine immaturity state in autism. Additional human studies on dendrite and spine number and morphology in postmortem tissue are needed to understand the properties of these structures in the cerebral cortex of patients with autism.

Manuscripts here.


Abstract. The cognitive phenotype of autism has been correlated with an altered balance of excitation to inhibition in the cerebral cortex, which could result from a change in the number, function, or morphology of GABA-expressing interneurons. The number of GABAergic interneuron subtypes has not been quantified in the autistic cerebral cortex. We classified interneurons into 3 subpopulations based on expression of the calcium-binding proteins parvalbumin, calbindin, or calretinin. We quantified the number of each interneuron subtype in postmortem neocortical tissue from 11 autistic cases and 10 control cases. Prefrontal Brodmann Areas (BA) BA46, BA47, and BA9 in autism and age-matched controls were analyzed by blinded researchers. We show that the number of parvalbumin+ interneurons in these 3 cortical areas-BA46, BA47, and BA9-is significantly reduced in autism compared with controls. The number of calbindin+ and calretinin+ interneurons did not differ in the cortical areas examined. Parvalbumin+ interneurons are fast-spiking cells that synchronize the activity of pyramidal cells through perisomatic and axo-axonic inhibition. The reduced number of parvalbumin+ interneurons could disrupt the balance of excitation/inhibition and alter gamma wave oscillations in the cerebral cortex of autistic subjects. These data will allow development of novel treatments specifically targeting parvalbumin interneurons.

Manuscripts here.



Abstract. Fragile X-associated tremor/ataxia syndrome (FXTAS) is a progressive neurodegenerative disorder that affects carriers of a FMR1 premutation. Symptoms include cerebellar ataxia, tremor, and cognitive deficits. The most characteristic pathology of FXTAS is the presence of eosinophilic ubiquitin-positive intranuclear inclusions in neurons and astrocytes throughout the nervous system and non-nervous tissues. Inclusions are present in neurons throughout the brain but are widely believed not to be present in the Purkinje cells (PCs) of the cerebellum. However, we analyzed 26 postmortem cases of FXTAS and demonstrated that 65 % of cases presented with inclusions within PCs of the cerebellum. We determined that the presence or absence of inclusions in PCs is correlated with age and that those cases with PC inclusions were overall 11 years older than those with no PC inclusions. Half of the cases with PCs with inclusions presented with twin nuclear inclusions. This novel finding demonstrating the presence of inclusions within PCs provides an insight into the understanding of the FXTAS motor symptoms and provides a novel target for the development of therapeutic strategies.

Manuscripts here.


Abstract. Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder associated with premutation alleles of the FMR1 gene. Iron is essential for many facets of cell metabolism in the brain but when altered is likely to contribute to the development of neurodegenerative diseases. We previously reported that iron accumulates in the choroid plexus and the putamen in FXTAS and that the level and distribution of key iron-binding proteins are also altered, suggesting a potential alteration of iron metabolism in the brain. Here, we hypothesize that iron metabolism is also altered in the FXTAS cerebellum. To test this hypothesis, we used cerebellum samples collected from FXTAS and control subjects and measured the amount of iron contained within the cerebellar cortex and dentate nucleus. We found that the number of iron deposits increased in the cerebellum only in a subset of cases of FXTAS. This accumulation is likely to be mediated by factors other than or in addition to CGG-repeat coupled pathology. Thus, iron deposition in the cerebellum cannot be used as a hallmark of FXTAS pathogenesis.

Manuscripts here.



Abstract. Fragile X spectrum disorder (FXSD) includes: fragile X syndrome (FXS), fragile X-associated tremor ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI), as well as other medical, psychiatric and neurobehavioral problems associated with the premutation and gray zone alleles. FXS is the most common monogenetic cause of autism (ASD) and intellectual disability (ID). The understanding of the neurobiology of FXS has led to many targeted treatment trials in FXS. The first wave of phase II clinical trials in FXS were designed to target the mGluR5 pathway; however the results did not show significant efficacy and the trials were terminated. The advances in the understanding of the GABA system in FXS have shifted the focus of treatment trials to GABA agonists, and a new wave of promising clinical trials is under way. Ganaxolone and allopregnanolone (GABA agonists) have been studied in individuals with FXSD and are currently in phase II trials. Both allopregnanolone and ganaxolone may be efficacious in treatment of FXS and FXTAS, respectively. Allopregnanolone, ganaxolone, riluzole, gaboxadol, tiagabine, and vigabatrin are potential GABAergic treatments. The lessons learned from the initial trials have not only shifted the targeted system, but also have refined the design of clinical trials. The results of these new trials will likely impact further clinical trials for FXS and other genetic disorders associated with ASD.

Manuscripts here.


Abstract. The subventricular zone (SVZ) is greatly expanded in primates with gyrencephalic cortices and is thought to be absent from vertebrates with three-layered, lissencephalic cortices, such as the turtle. Recent work in rodents has shown that Tbr2-expressing neural precursor cells in the SVZ produce excitatory neurons for each cortical layer in the neocortex. Many excitatory neurons are generated through a two-step process in which Pax6-expressing radial glial cells divide in the VZ to produce Tbr2-expressing intermediate progenitor cells, which divide in the SVZ to produce cortical neurons. We investigated the evolutionary origin of SVZ neural precursor cells in the prenatal cerebral cortex by testing for the presence and distribution of Tbr2-expressing cells in the prenatal cortex of reptilian and avian species. We found that mitotic Tbr2+ cells are present in the prenatal cortex of lizard, turtle, chicken, and dove. Furthermore, Tbr2+ cells are organized into a distinct SVZ in the dorsal ventricular ridge (DVR) of turtle forebrain and in the cortices of chicken and dove. Our results are consistent with the concept that Tbr2+ neural precursor cells were present in the common ancestor of mammals and reptiles. Our data also suggest that the organizing principle guiding the assembly of Tbr2+ cells into an anatomically distinct SVZ, both developmentally and evolutionarily, may be shared across vertebrates. Finally, our results indicate that Tbr2 expression can be used to test for the presence of a distinct SVZ and to define the boundaries of the SVZ in developing cortices. J. Comp. Neurol., 2015.

Manuscripts here.


Abstract. Compression injuries of the murine spinal cord are valuable animal models for the study of spinal cord injury (SCI) and spinal regenerative therapy. The calibrated forceps model of compression injury is a convenient, low cost, and very reproducible animal model for SCI. We used a pair of modified forceps in accordance with the method published by Plemel et al. (2008) to laterally compress the spinal cord to a distance of 0.35 mm. In this video, we will demonstrate a dorsal laminectomy to expose the spinal cord, followed by compression of the spinal cord with the modified forceps. In the video, we will also address issues related to the care of paraplegic laboratory animals. This injury model produces mice that exhibit impairment in sensation, as well as impaired hindlimb locomotor function. Furthermore, this method of injury produces consistent aberrations in the pathology of the SCI, as determined by immunohistochemical methods. After watching this video, viewers should be able to determine the necessary supplies and methods for producing SCI of various severities in the mouse for studies on SCI and/or treatments designed to mitigate impairment after injury.

Manuscripts here.


Abstract. We investigated the cytoarchitecture of the anterior superior temporal area (TA2) of the postmortem cerebral cortex in 9 subjects with autism and 9 age-matched typically developing subjects between the ages of 13 and 56 years. The superior temporal gyrus is involved in auditory processing and social cognition and its pathology has been correlated with autism. We quantified the number and soma volume of pyramidal neurons in the supragranular layers and pyramidal neurons in the infragranular layers in each subject. We did not find significant differences in the number or volume of supragranular or infragranular neurons in the cerebral cortex of subjects with autism compared to typically developing subjects. This report does not support an alteration of supragranular to infragranular neurons in autism. However, further stereological analysis of the number of cells and cell volumes in specific cortical areas is needed to better establish the cellular phenotype of the autistic cerebral cortex and to understand its clinical relevance in autism.

Manuscripts here.


Abstract. Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased cellular proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size also and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor.

Manuscripts here.


Abstract. Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder associated with premutation alleles of the FMR1 gene that is characterized by progressive action tremor, gait ataxia, and cognitive decline. Recent studies of mitochondrial dysfunction in FXTAS have suggested that iron dysregulation may be one component of disease pathogenesis. We tested the hypothesis that iron dysregulation is part of the pathogenic process in FXTAS. We analyzed postmortem choroid plexus from FXTAS and control subjects, and found that in FXTAS iron accumulated in the stroma, transferrin levels were decreased in the epithelial cells, and transferrin receptor 1 distribution was shifted from the basolateral membrane (control) to a predominantly intracellular location (FXTAS). In addition, ferroportin and ceruloplasmin were markedly decreased within the epithelial cells. These alterations have implications not only for understanding the pathophysiology of FXTAS, but also for the development of new clinical treatments that may incorporate selective iron chelation.

Manuscripts here.


Abstract. Reelin protein (RELN) level is reduced in the cerebral cortex and cerebellum of subjects with autism. RELN is synthesized and secreted by a subpopulation of neurons in the developing cerebral cortex termed Cajal–Retzius (CR) cells. These cells are abundant in the marginal zone during cortical development, many die after development is complete, but a small population persists into adulthood. In adult brains, RELN is secreted by the surviving CR cells, by a subset of GABAergic interneurons in layer I, and by pyramidal cells and GABAergic interneurons in deeper cortical layers. It is widely believed that decreased RELN in layer I of the cerebral cortex of subjects with autism may result from a decrease in the density of RELN expressing neurons in layer I; however, this hypothesis has not been tested. We examined RELN expression in layer I of the adult human cortex and found that 70% of cells express RELN in both control and autistic subjects. We quantified the density of neurons in layer I of the superior temporal cortex of subjects with autism and age-matched control subjects. Our data show that there is no change in the density of neurons in layer I of the cortex of subjects with autism, and therefore suggest that reduced RELN expression in the cerebral cortex of subjects with autism is not a consequence of decreased numbers of RELN-expressing neurons in layer I. Instead reduced RELN may result from abnormal RELN processing, or a decrease in the number of other RELN-expressing neuronal cell types.

Manuscripts here.


Abstract. The marginal zone (MZ) of the prenatal cerebral cortex plays a crucial role in cellular migration and laminar patterning in the developing neocortex and its equivalent in the adult brain – layer I, participates in cortical circuitry integration within the adult neocortex. The MZ/layer I, which has also been called the plexiform layer and cell-poor zone of Meynert, among others, is home to several cell populations including glia, neurons, and Cajal–Retzius (CR) cells. Cajal once said that the MZ is one of the oldest formations in the phylogenetic series, and that the characteristics of layer I in human are similar in all vertebrates except fish (Ramon y Cajal, 1899). Despite the presence of CR cells in the MZ/layer I of all developing and adult vertebrate brains, and more than one hundred years of research, the phenotype and function of layer I cells have still not been clearly defined. Recent technological advances have yielded significant progress in functional and developmental studies, but much remains to be understood about neurons in MZ/layer I. Since the time of Retzius and Cajal, and continuing with modern era research from the likes of Marín- Padilla, the study of CR cells has been based on their morphological characteristics in Golgi staining. However, since Cajal’s initial description, the term “CR cell” has been applied differently and now is often used to indicate reelin (Reln)-positive cells in MZ/layer I. Here we review the history of work by Cajal, Retzius, and others pertaining to CR cells. We will establish a link between original descriptions of CR cell morphology by Cajal, Retzius, and others, and current understandings of the cell populations that reside in MZ/layer I based on the use of cellular markers. We propose to use the term “CR cell” for the class of neurons that express Reln in the MZ/layer I in both prenatal, developing and adult cerebral cortex..

Manuscripts here.


Abstract. Multiple studies have implicated a role of maternal autoantibodies reactive against fetal brain proteins specific to autism in the etiology of autism spectrum disorders (ASD). In the current study, we examined the impact of brain-reactive maternal autoantibodies of mothers of children with autism (MAU) on offspring behavior in mice compared to offspring exposed to non-reactive IgG of mothers of typically developing children (MTD). Embryonic offspring were exposed to a single intraventricular injection of MAU or MTD IgG on embryonic day 14. Offspring were allowed to mature to adulthood and were subsequently tested for sociability and stereotypic behaviors using a 3-chambered social approach task, marble burying task, and assessment of spontaneous grooming behaviors in response to a novel environment. Results indicate that MAU offspring display autistic-like stereotypical behavior in both marble burying and spontaneous grooming behaviors. Additionally, small alterations in social approach behavior were also observed in MAU offspring compared to MTD offspring. This report demonstrates for the first time the effects of a single, low dose intraventricular exposure of IgG derived from individual MAU samples on offspring behavior.

Manuscripts here.



Abstract. Harnessing the regenerative capabilities of endogenous precursor cells in the spinal cord may be a useful tool for clinical treatments aimed at replacing cells lost as a consequence of disease or trauma. To better understand the proliferative properties and differentiation potential of the adult spinal cord after injury, we used a mouse model of compression spinal cord injury (SCI). After injury, adult mice were administered BrdU to label mitotic cells and sacrificed at different time-points for immunohistochemical analysis. Our data show that the rate of proliferation increased in all regions of the spinal cord 1 day after injury, peaked after 3 days, and remained elevated for at least 14 days after injury. Proliferation was greater at the injury epicenter than in rostral and caudal adjacent spinal segments. The number of proliferative cells and rate of proliferation varied between dorsal and ventral regions of the spinal cord and between the gray and white matter. Newly generated cells expressed markers for progenitor cells (Nestin and Olig2), oligodendrocytes (Sox10), astrocytes (S100b and glial fibrillary acidic protein), and microglia (Iba1), but not neuronal markers (Map2 and NeuN). Marker expression varied with regard to the dorso-ventral region, rostro-caudal proximity to the injury epicenter, and time after injury. At early time-points after injury, BrdU+ cells mainly expressed microglial/macrophage and astrocytic markers, while at these same time-points in the control spinal cord the mitotic cells predominately expressed oligodendrocyte and oligodendrocyte progenitor cell markers. The profile of proliferation and cell fate marker expression indicates that after moderate compression, the spinal cord has the capacity to generate a variety of glial cells but not neurons, and that this pattern is space and time specific. Future studies should focus on ways to control proliferation and cell fate after injury to aid the development of cell replacement treatments for SCI.

Manuscripts here.


Abstract. The germinal zones of the embryonic macaque neocortex comprise the ventricular zone (VZ) and the subventricular zone (SVZ). The mammalian SVZ is subdivided into an inner SVZ and an outer SVZ, with the outer SVZ being particularly large in primates. The existence of distinct precursor cell types in the neocortical proliferative zones was inferred over 100 years ago and recent evidence supports this concept. Precursor cells exhibiting diverse morphologies, patterns of transcription factor expression, and fate potential have been identified in the neocortical proliferative zones. Neurogenic precursor cells are thought to exhibit characteristics of glial cells, but the existence of neurogenic precursor cells that do not share glial specific properties has also been proposed. Therefore, one question that remains is whether neural precursor cells in the prenatal neocortex belong within the astroglial cell class, as they do in neurogenic regions of the adult neocortex, or instead include a diverse collection of precursor cells belonging to distinct cell classes. We examined the expression of astroglial markers by mitotic precursor cells in the telencephalon of prenatal macaque and human. We show that in the dorsal neocortex all mitotic cells at the surface of the ventricle, and all Pax6+ and Tbr2+ mitotic cells in the proliferative zones, express the astroglial marker GFAP. The majority of mitotic cells undergoing division away from the ventricle express GFAP, and many of the GFAP-negative mitoses express markers of cells derived from the ventral telencephalon or extracortical sites. In contrast, a markedly lower proportion of precursor cells express GFAP in the ganglionic eminence. In conclusion, we propose that the heterogeneity of neural precursor cells in the dorsal cerebral cortex develops within the GFAP+ astroglial cell class.

Manuscripts here.


Abstract. Neurogenesis must be properly regulated to ensure that cell production does not exceed the requirements of the growing cerebral cortex, yet our understanding of mechanisms that restrain neuron production remains incomplete. We investigated the function of microglial cells in the developing cerebral cortex of prenatal and postnatal macaques and rats and show that microglia limit the production of cortical neurons by phagocytosing neural precursor cells. We show that microglia selectively colonize the cortical proliferative zones and phagocytose neural precursor cells as neurogenesis nears completion. We found that deactivating microglia in utero with tetracyclines or eliminating microglia from the fetal cerebral cortex with liposomal clodronate significantly increased the number of neural precursor cells, while activating microglia in utero through maternal immune activation significantly decreased the number of neural precursor cells. These data demonstrate that microglia play a fundamental role in regulating the size of the precursor cell pool in the developing cerebral cortex, expanding our understanding of the mechanisms that regulate cortical development. Furthermore, our data suggest that any factor that alters the number or activation state of microglia in utero can profoundly affect neural development and affect behavioral outcomes.

Manuscripts here.


Abstract. Spinal cord injury (SCI) results in motor and sensory deficits, the severity of which depends on the level and extent of the injury. Animal models for SCI research include transection, contusion, and compression mouse models. In this paper we will discuss the endogenous stem cell response to SCI in animal models. All SCI animal models experience a similar peak of cell proliferation three days after injury; however, each specific type of injury promotes a specific and distinct stem cell response. For example, the transection model results in a strong and localized initial increase of proliferation, while in contusion and compression models, the initial level of proliferation is lower but encompasses the entire rostrocaudal extent of the spinal cord. All injury types result in an increased ependymal proliferation, but only in contusion and compression models is there a significant level of proliferation in the lateral regions of the spinal cord. Finally, the fate of newly generated cells varies from a mainly oligodendrocyte fate in contusion and compression to a mostly astrocyte fate in the transection model. Here we will discuss the potential of endogenous stem/progenitor cell manipulation as a therapeutic tool to treat SCI.

Manuscripts here.


Abstract. Here we examine the functions of the Myc cofactor and histone acetyltransferase, GCN5/KAT2A, in neural stem and precursor cells (NSC) using a conditional knockout approach driven by nestin-cre. Mice with GCN5-deficient NSC exhibit a 25% reduction in brain mass with a microcephaly phenotype similar to that observed in nestin-cre driven knockouts of c- or N-myc. In addition, the loss of GCN5 inhibits precursor cell proliferation and reduces their populations in vivo, as does loss of N-myc. Gene expression analysis indicates that about one-sixth of genes whose expression is affected by loss of GCN5 are also affected in the same manner by loss of N-myc. These findings strongly support the notion that GCN5 protein is a key N- Myc transcriptional cofactor in NSC, but are also consistent with recruitment of GCN5 by other transcription factors and the use by N-Myc of other histone acetyltransferases. Putative N-Myc/GCN5 coregulated transcriptional pathways include cell metabolism, cell cycle, chromatin, and neuron projection morphogenesis genes. GCN5 is also required for maintenance of histone acetylation both at its putative specific target genes and at Myc targets. Thus, we have defined an important role for GCN5 in NSC and provided evidence that GCN5 is an important Myc transcriptional cofactor in vivo.

Manuscripts here.


Abstract. The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates.

Manuscripts here.


Abstract. We investigated a strategy to ameliorate the motor symptoms of rats that received 6-hydroxydopamine (6-OHDA) lesions, a rodent model of Parkinson’s disease, through transplantation of embryonic medial ganglionic eminence (MGE) cells into the striatum. During brain development, embryonic MGE cells migrate into the striatum and neocortex where they mature into GABAergic interneurons and play a key role in establishing the balance between excitation and inhibition. Unlike most other embryonic neurons, MGE cells retain the capacity for migration and inte- gration when transplanted into the postnatal and adult brain. We performed MGE cell transplantation into the basal ganglia of control and 6-OHDA- lesioned rats. Transplanted MGE cells survived, differentiated into GABA+ neurons, integrated into host circuitry, and modifed motor behavior in both lesioned and control rats. Our data suggest that MGE cell transplantation into the striatum is a prom- ising approach to investigate the potential benefits of remodeling basal ganglia circuitry in neurodegen- erative diseases.

Manuscripts here.


Abstract. Neocortical precursor cells undergo symmetric and asymmetric divisions while producing large numbers of diverse cortical cell types. In Drosophila, cleavage plane orientation dictates the inheritance of fate-determinants and the symmetry of newborn daughter cells during neuroblast cell divisions. One model for predicting daughter cell fate in the mammalian neocortex is also based on cleavage plane orientation. Precursor cell divisions with a cleavage plane orientation that is perpendicular with respect to the ventricular surface (vertical) are predicted to be symmetric, while divisions with a cleavage plane orientation that is parallel to the surface (horizontal) are predicted to be asymmetric neurogenic divisions. However, analysis of cleavage plane orientation at the ventricle suggests that the number of predicted neurogenic divisions might be insufficient to produce large amounts of cortical neurons. To understand factors that correlate with the symmetry of cell divisions, we examined rat neocortical precursor cells in situ through real-time imaging, marker analysis, and electrophysiological recordings. We find that cleavage plane orientation is more closely associated with precursor cell type than with daughter cell fate, as commonly thought. Radial glia cells in the VZ primarily divide with a vertical orientation throughout cortical development and undergo symmetric or asymmetric self- renewing divisions depending on the stage of development. In contrast, most intermediate progenitor cells divide in the subventricular zone with a horizontal orientation and produce symmetric daughter cells. We propose a model for predicting daughter cell fate that considers precursor cell type, stage of development, and the planar segregation of fate determinants. J. Comp. Neurol. 508:28–44, 2008.

Manuscripts here.


Abstract. Recent work has begun to identify neural stem and progenitor cells in the embryonic and adult brain, and is unravelling the mechanisms whereby new nerve cells are created and delivered to their correct locations. Radial glial (RG) cells, which are present in the developing mammalian brain, have been proposed to be neural stem cells because they produce multiple cell types. Furthermore, time-lapse imaging demonstrates that RG cells undergo asymmetric self-renewing divisions to produce immature neurons that migrate along their parent radial fibre to reach the developing cerebral cortex. RG cells also produce intermediate progenitor (IP) cells that undergo symmetric division in the subventricular zone of the embryonic cortex to produce pairs of neurons. The sym- metric IP divisions increase cell number within the same cortical layer. This two-step process of neurogenesis suggests new mechanisms for the generation of cell diversity and cell number in the developing cortex and supports a model similar to that proposed for the development of the fruit fly CNS. In this model, a temporal sequence of gene expression changes in asymmetrically dividing self-renewed RG cells could lead to the differential inheritance of cell identity genes in cortical cells generated at different cell cycles.

Manuscripts here.


Abstract. The mammalian cerebral cortex is the most cellularly complex structure in the animal king- dom. Almost all cortical neurons are produced during a limited embryonic period by cor- tical progenitor cells in a proliferative region that surrounds the ventricular system of the developing brain. The proliferative region comprises 2 distinct zones, the ventricular zone, which is a neuroepithelial layer directly adjacent to the ventricular lumen, and the subventricular zone, which is positioned superficial to the ventricular zone. Recent advances in molecular and cell biology have made possible the study of specific cell populations, and 2 cortical progenitor cell types, radial glial cells in the ventricular zone and intermediate progenitor cells in the subventricular zone, have been shown to generate neurons in the embryonic cerebral cortex. These findings have refined our understanding of cortical neurogenesis, with implications for understanding the causes of neurodevelopmental disorders and for their potential treatment.

Manuscripts here.


Abstract. The dramatic evolutionary expansion of the cerebral cortex of Homo sapiens underlies our unique higher cortical functions, and therefore bears on the ultimate issue of what makes us human. Recent insights into developmental events during early proliferative stages of cortical development indicate how neural stem and progenitor cells might interact to produce cortical expansion during development, and could shed light on evolutionary changes in cortical structure.

Manuscripts here.


Abstract. Two distinct populations of cerebral cortical progenitor cells that generate neurons during embryogenesis have been identified: radial glial cells and intermediate progenitor cells. Despite advances in our understanding of progenitor cell populations, we know relatively little about factors that regulate their proliferative behaviour. 17-b-Estradiol (E2) is present in the adult and developing mammalian brain, and plays an important role in central nervous system processes such as neuronal differentiation, survival and plasticity. E2 also stimulates neurogenesis in the adult dentate gyrus. We examined the role of E2 during embryonic cortical neurogenesis through immunohistochemistry, in situ hybridization, functional enzyme assay, organotypic culture and in utero administration of estradiol- blocking agents in mice. We show that aromatase, the E2 synthesizing enzyme, is present in the embryonic neocortex, that estrogen receptor-a is present in progenitor cells during cortical neurogenesis, that in vitro E2 administration rapidly promotes proliferation, and that in utero blockade of estrogen receptors decreases proliferation of embryonic cortical progenitor cells. Furthermore, the E2 inhibitor a-fetoprotein is expressed at high levels by radial glial cells but at lower levels by intermediate progenitor cells, suggesting that E2 differentially influences the proliferation of these cortical progenitor cell types. These findings demonstrate a new functional role for E2 as a proliferative agent during critical stages of cerebral cortex development.

Manuscripts here.


Abstract. The vertebrate cerebral cortex varies from the 3-layered dorsal cortex of reptiles to the 6-layered lissencephalic cortex character- istic of rodents and to the 6-layered gyrencephalic cortex typical of carnivores and primates. Distinct developmental mechanisms may have evolved independently to account for the radial expansion that produced the multilayered cortex of mammals and for the tangential expansion of cortical surface area that resulted in gyrencephalic cortex. Recent evidence shows that during the late stages of cortical development, radial glial cells divide asymmetrically in the ventricular zone to generate radial glial cells and intermediate progenitor (IP) cells and that IP cells subsequently divide symmet- rically in the subventricular zone to produce multiple neurons. We propose that the evolution of this two-step pattern of neurogenesis played an important role in the amplification of cell numbers underlying the radial and tangential expansion of the cerebral cortex.

Manuscripts here.


Abstract. Precise patterns of cell division and migration are crucial to transform the neuroepithelium of the embryonic forebrain into the adult cerebral cortex. Using time-lapse imaging of clonal cells in rat cortex over several generations, we show here that neurons are generated in two proliferative zones by distinct patterns of division. Neurons arise directly from radial glial cells in the ventricular zone (VZ) and indirectly from intermediate progenitor cells in the subventricular zone (SVZ). Furthermore, newborn neurons do not migrate directly to the cortex; instead, most exhibit four distinct phases of migration, including a phase of retrograde movement toward the ventricle before migration to the cortical plate. These findings provide a comprehensive and new view of the dynamics of cortical neurogenesis and migration.

Manuscripts here.


Abstract. Reelin is a large secretable protein which, when developmentally defective, causes the reeler brain malformation in mice and a recessive form of lissencephaly with cerebellar hypoplasia in humans. In addition, Reelin is heavily expressed throughout the adult brain, although its function/s there are still poorly understood. To gain insight into which adult neuronal circuits may be under the influence of Reelin, we systematically mapped Reelin-immunoreactive neuronal somata, axons, and neuropil in the brain and brainstem of ferrets. Results show that Reelin immunoreactivity is found in widespread but specific sets of neuronal bodies, axonal tracts, and gray matter neuropil regions. Depending on the region, the immunoreactive neuronal somata correspond to interneurons, projection neurons, or both. Some well-defined axonal projection systems are immunoreactive, whereas most other white matter tracts are unlabeled. The labeled pathways include, among others, the lateral olfactory tract, the entorhinohippocampal (perforant) pathway, the retroflex bundle, and the stria terminalis. Labeled axons in these tracts contain large numbers of discrete, very small, immunoreactive particles, suggestive of secretory vesicles under the light microscope. The neuropil in the terminal arborization fields of these axons is also heavily immunoreactive. Taken together, our observations are consistent with the notion that some neurons may anterogradely transport Reelin along their axons in large membrane-bound secretory vesicles (Derer et al. [2001] J. Comp. Neurol. 440:136-143) and secrete it into their terminal arborization fields, which may be quite distant from the somata synthesizing the protein. These findings have implications for identifying where Reelin acts in adult brain circuits.

Manuscripts here.


Abstract. Reelin is a large secretable protein which is widely expressed by specific neuronal populations. In the embryonic brain, Reelin plays a signaling role critical for the correct positioning of migrating neuroblasts. Reelin is also expressed in the adult mammalian brain, including humans; however, its function/s there remain poorly understood. To gain insight into which neuronal populations and specific circuits may be influenced by Reelin in the adult, we have conducted a light and electron microscope analysis of Reelin-immunoreactive neuron types in the cerebral cortex and subcortical regions of adult macaque monkeys. Results show that the great majority of brain neurons, including interneurons and projection neurons, are immunoreactive for Reelin although some neuronal populations do not contain Reelin. The immunoreactive protein is located intracellularly, mainly in neuronal somata. Reelin is also present in gray matter neuropil as well as in some long axonal pathways and their terminal arborizations, suggesting that it can be axonally transported over long distances. The staining patterns in the labeled neurons are remarkably diverse. Our observations reveal a wider distribution of Reelin in the adult macaque brain than in any other species investigated to date. The data show that Reelin is in a position to influence most brain circuits in the adult primate brain.

Manuscripts here.


ABSTRACT: Recent evidence indicates that, in addition to play- ing a crucial role in early cortical development, intercellular signaling mediated by the protein Reelin may be widely active in the adult neocortex. The extent of Reelin distribution and its functional role in the adult are not clear yet. Here, we have examined Reelin immunoreactivity in the neocortex of an adult rodent (rat, Rattus norvegicus), a carnivore (ferret, Mustela putorius), and a primate (macaque monkeys Macaca nemes- trina, Macaca mulatta) at the optic microscope level. Our data show that the neocortex of all three species contains several morphologically distinct populations of interneurons whose perikaryon and proximal dendritic processes are heavily immu- noreactive for Reelin. The laminar distribution of these cells is species-specific. In addition, discrete reelin-immunoreactive pericellular structures are present in virtually all neocortical neurons of macaques. © 2002 Elsevier Science Inc.

Manuscripts here.






COLLABORATIONS

Abstract. Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a limited expansion of CGG repeats in the 5' UTR of FMR1. Two mechanisms are proposed to cause FXTAS: RNA gain-of-function, where CGG RNA sequesters specific proteins, and translation of CGG repeats into a polyglycine-containing protein, FMRpolyG. Here we developed transgenic mice expressing CGG repeat RNA with or without FMRpolyG. Expression of FMRpolyG is pathogenic, while the sole expression of CGG RNA is not. FMRpolyG interacts with the nuclear lamina protein LAP2β and disorganizes the nuclear lamina architecture in neurons differentiated from FXTAS iPS cells. Finally, expression of LAP2β rescues neuronal death induced by FMRpolyG. Overall, these results suggest that translation of expanded CGG repeats into FMRpolyG alters nuclear lamina architecture and drives pathogenesis in FXTAS.

Manuscripts here.


Abstract. Encephalopathy of prematurity (EOP) is a complex form of cerebral injury that occurs in the setting of hypoxia-ischemia (HI) in premature infants. Using a rat model of EOP, we investigated whether neonatal HI of the brain may alter the expression of cystathionine β-synthase (CBS) and the components of the mammalian target of rapamycin (mTOR) signaling. We performed unilateral carotid ligation and induced HI (UCL/HI) in Long-Evans rats at P6 and found increased CBS expression in white matter (i.e. corpus callosum, cingulum bundle and external capsule) as early as 24 h (P7) postprocedure. CBS remained elevated through P21, and, to a lesser extent, at P40. The mTOR downstream target 70 kDa ribosomal protein S6 kinase (p70S6K and phospho-p70S6K) and 40S ribosomal protein S6 (S6 and phospho-S6) were also overexpressed at the same time points in the UCL/HI rats compared to healthy controls. Overexpression of mTOR components was not observed in rats treated with the mTOR inhibitor everolimus. Behavioral assays performed on young rats (postnatal day 35-37) following UCL/HI at P6 indicated impaired preference for social novelty, a behavior relevant to autism spectrum disorder, and hyperactivity. Everolimus restored behavioral patterns to those observed in healthy controls. A gait analysis has shown that motor deficits in the hind paws of UCL/HI rats were also significantly reduced by everolimus. Our results suggest that neonatal HI brain injury may inflict long-term damage by upregulation of CBS and mTOR signaling. We propose this cascade as a possible new molecular target for EOP-a still untreatable cause of autism, hyperactivity and cerebral palsy.

Manuscripts here.


Abstract. Epigenetic silencing of fragile X mental retardation 1 (FMR1) causes fragile X syndrome (FXS), a common inherited form of intellectual disability and autism. FXS correlates with abnormal synapse and dendritic spine development, but the molecular link between the absence of the FMR1 product FMRP, an RNA binding protein, and the neuropathology is unclear. We found that the messenger RNA encoding bone morphogenetic protein type II receptor (BMPR2) is a target of FMRP. Depletion of FMRP increased BMPR2 abundance, especially that of the full-length isoform that bound and activated LIM domain kinase 1 (LIMK1), a component of the noncanonical BMP signal transduction pathway that stimulates actin reorganization to promote neurite outgrowth and synapse formation. Heterozygosity for BMPR2 rescued the morphological abnormalities in neurons both in Drosophila and in mouse models of FXS, as did the postnatal pharmacological inhibition of LIMK1 activity. Compared with postmortem prefrontal cortex tissue from healthy subjects, the amount of full-length BMPR2 and of a marker of LIMK1 activity was increased in this brain region from FXS patients. These findings suggest that increased BMPR2 signal transduction is linked to FXS and that the BMPR2-LIMK1 pathway is a putative therapeutic target in patients with FXS and possibly other forms of autism.

Manuscripts here.


Abstract. Fragile X-associated tremor/ataxia syndrome (FXTAS) is a progressive neurodegenerative disorder caused by a repeat expansion in the fragile X mental retardation 1 (FMR1) gene. The disorder is characterized by kinetic tremor and cerebellar ataxia, shows age-dependent penetrance, and occurs more frequently in men. This paper summarizes the key emerging issues in FXTAS as presented at the Second International Conference on the FMR1 Premutation: Basic Mechanisms & Clinical Involvement in 2015. The topics discussed include phenotype-genotype relationships, neuro- behavioral function, and updates on FXTAS genetics and imaging.

Manuscripts here.


Abstract. Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late adult-onset neurodegenerative disorder caused by a premutation CGG-trinucleotide repeat expansion (55-200 CGG repeats) within the 5'-untranslated region of the FMR1 gene. Although FXTAS generally affects premutation carriers over 50 years of age, cognitive and psychological symptoms can appear in carriers during childhood, suggesting that the FMR1 premutation affects brain function early in life. Recent work with cultured hippocampal neurons from a premutation (Fmr1 CGG knock-in) mouse model revealed impaired development of early postnatal neurons, consistent with the developmental clinical involvement of premutation carriers. In the current work, we show that the presence of premutation CGG-repeat expansions in the mouse Fmr1 gene alters embryonic neocortical development. Specifically, embryonic premutation mice display migration defects in the neocortex and altered expression of neuronal lineage markers. The current data demonstrate that premutation alleles of the Fmr1 gene are associated with defects in developmental programs operating during prenatal stages of brain formation and provide further evidence that the FMR1 premutation has a neurodevelopmental component.

Manuscripts here.


Abstract. Autism is a neurodevelopmental disorder characterized by impairments in social interaction and deficits in verbal and nonverbal communication, together with the presence of repetitive behaviors or a limited repertoire of activities and interests. The causes of autism are currently unclear. In a previous study, we determined that 21% of children with autism have plasma autoantibodies that are immunoreactive with a population of neurons in the cerebellum that appear to be Golgi cells, which are GABAergic interneurons. METHODS: We have extended this analysis by examining plasma immunoreactivity in the remainder of the brain. To determine cell specificity, double-labeling studies that included one of the calcium-binding proteins that are commonly colocalized in GABAergic neurons (calbindin, parvalbumin or calretinin) were also carried out to determine which GABAergic neurons are immunoreactive. Coronal sections through the rostrocaudal extent of the macaque monkey brain were reacted with plasma from each of seven individuals with autism who had previously demonstrated positive Golgi cell staining, as well as six negative controls. In addition, brain sections from adult male mice were similarly examined. RESULTS: In each case, specific staining was observed for neurons that had the morphological appearance of interneurons. By double-labeling sections with plasma and with antibodies directed against γ-aminobutyric acid (GABA), we determined that all autoantibody-positive neurons were GABAergic. However, not all GABAergic neurons were autoantibody-positive. Calbindin was colabeled in several of the autoantibody-labeled cells, while parvalbumin colabeling was less frequently observed. Autoantibody-positive cells rarely expressed calretinin. Sections from the mouse brain processed similarly to the primate sections also demonstrated immunoreactivity to interneurons distributed throughout the neocortex and many subcortical regions. Some cell populations stained in the primate (such as the Golgi neurons in the cerebellum) were not as robustly immunoreactive in the mouse brain. CONCLUSIONS: These results suggest that the earlier report of autoantibody immunoreactivity to specific cells in the cerebellum extend to other regions of the brain. Further, these findings confirm the autoantibody-targeted cells to be a subpopulation of GABAergic interneurons. The potential impact of these autoantibodies on GABAergic disruption with respect to the etiology of autism is discussed herein.

Manuscripts here.


Separate murine knockout (KO) of either c- or N-myc genes in neural stem and precursor cells (NSC) driven by nestin-cre causes microcephaly. The cerebellum is particularly affected in the N-myc KO, leading to a strong reduction in cerebellar granule neural progenitors (CGNP) and mature granule neurons. In humans, mutation of N-myc also causes microcephaly in Feingold Syndrome. We created a double KO (DKO) of c- and N-myc using nestin-cre, which strongly impairs brain growth, particularly that of the cerebellum. Granule neurons were almost absent from the Myc DKO cerebellum, and other cell types were relatively overrepresented, including astroglia, oligodendrocytes, and Purkinje neurons. These findings are indicative of a profound disruption of cell fate of cerebellar stem and precursors. DKO Purkinje neurons were strikingly lacking in normal arborization. Inhibitory neurons were ectopic and exhibited very abnormal GAD67 staining patterns. Also consistent with altered cell fate, the adult DKO cerebellum still retained a residual external germinal layer (EGL). CGNP in the DKO EGL were almost uniformly NeuN and p27KIP1 positive as well as negative for Math1 and BrdU at the peak of normal cerebellar proliferation at P6. The presence of some mitotic CGNP in the absence of S phase cells suggests a possible arrest in M phase. CGNP and NSC metabolism also was affected by loss of Myc as DKO cells exhibited weak nucleolin staining. Together these findings indicate that c- and N-Myc direct cerebellar development by maintaining CGNP and NSC populations through inhibiting differentiation as well as directing rapid cell cycling and active cellular metabolism.

Manuscripts here.


Forebrain subventricular zone (SVZ) progenitor cells give rise to glia and olfactory bulb interneurons during early postnatal life in rats. We investigated the potential of SVZ cells to alter their fate by transplanting them into a heterotypic neurogenic and gliogenic environment-the cerebellum. Transplanted cells were examined 1 to 7 weeks and 6 months post transplantation. Forebrain progenitors populated the cerebellum and differentiated into oligodendrocytes, cerebellar-specific Bergmann glia and velate astrocytes, and neurons. The transplanted cells that differentiated into neurons maintained an interneuronal fate: they were GABA-positive, expressed interneuronal markers, such as calretinin, and exhibited membrane properties that are characteristic of interneurons. However, the transplanted interneurons lost the expression of the olfactory bulb transcription factors Tbr2 and Dlx1, and acquired a cerebellar-like morphology. Forebrain SVZ progenitors thus have the potential to adapt to a new environment and integrate into diverse regions, and may be a useful tool in transplantation strategies.

Manuscripts here.


Inputs to the layer I apical dendritic tufts of pyramidal cells are crucial in "top-down" interactions in the cerebral cortex. A large population of thalamocortical cells, the "matrix" (M-type) cells, provides a direct robust input to layer I that is anatomically and functionally different from the thalamocortical input to layer VI. The developmental timecourse of M-type axons is examined here in rats aged E (embryonic day) 16 to P (postnatal day) 30. Anterograde techniques were used to label axons arising from 2 thalamic nuclei mainly made up of M-type cells, the Posterior and the Ventromedial. The primary growth cones of M-type axons rapidly reached the subplate of dorsally situated cortical areas. After this, interstitial branches would sprout from these axons under more lateral cortical regions to invade the overlying cortical plate forming secondary arbors. Moreover, retrograde labeling of M-type cell somata in the thalamus after tracer deposits confined to layer I revealed that large numbers of axons from multiple thalamic nuclei had already converged in a given spot of layer I by P3. Because of early ingrowth in such large numbers, interactions of M-type axons may significantly influence the early development of cortical circuits.

Manuscripts here.


Reelin, a large extracellular matrix glycoprotein, is secreted by several neuron populations in the developing and adult rodent brain. Secreted Reelin triggers a complex signaling pathway by binding lipoprotein and integrin membrane receptors in target cells. Reelin signaling regulates migration and dendritic growth in developing neurons, while it can modulate synaptic plasticity in adult neurons. To identify which adult neural circuits can be modulated by Reelin-mediated signaling, we systematically mapped the distribution of Reelin in adult rat brain using sensitive immunolabeling techniques. Results show that the distribution of intracellular and secreted Reelin is both very widespread and specific. Some interneuron and projection neuron populations in the cerebral cortex contain Reelin. Numerous striatal neurons are weakly immunoreactive for Reelin and these cells are preferentially located in striosomes. Some thalamic nuclei contain Reelin-immunoreactive cells. Double-immunolabeling for GABA and Reelin reveals that the Reelin-immunoreactive cells in the visual thalamus are the intrinsic thalamic interneurons. High local concentrations of extracellular Reelin selectively outline several dendrite spine-rich neuropils. Together with previous mRNA data, our observations suggest abundant axoplasmic transport and secretion in pathways such as the retino-collicular tract, the entorhino-hippocampal ('perforant') path, the lateral olfactory tract or the parallel fiber system of the cerebellum. A preferential secretion of Reelin in these neuropils is consistent with reports of rapid, activity-induced structural changes in adult brain circuits.

Manuscripts here.



Copyright 2012 © - Mireia Martínez Cerdeño - Designed by Bootstrap Themes